This article investigates the phenomenon of rebound effects in relation to a transition to a Circular Economy (CE) through qualitative inquiry. The aim is to gain insights in manifestations of rebound effects by studying the Dutch textile industry as it transitions to a circular system, and to develop appropriate mitigation strategies that can be applied to ensure an effective transition. The rebound effect, known originally from the energy efficiency literature, occurs when improvements in efficiency or other technological innovations fail to deliver on their environmental promise due to (behavioral) economic mechanisms. The presence of rebound in CE contexts can therefore lead to the structural overstatement of environmental benefits of certain innovations, which can influence reaching emission targets and the preference order of recycling. In this research, the CE rebound effect is investigated in the Dutch textile industry, which is identified as being vulnerable to rebound, yet with a positive potential to avoid it. The main findings include the very low awareness of this effect amongst key stakeholders, and the identification of specific and general instances of rebound effects in the investigated industry. In addition, the relation of these effects to Circular Business Models and CE strategies are investigated, and placed in a larger context in order to gain a more comprehensive understanding about the place and role of this effect in the transition. This concerns the necessity for a new approach to how design has been practiced traditionally, and the need to place transitional developments in a systems perspective. Propositions that serve as theory-building blocks are put forward and include suggestions for further research and recommendations about dealing with rebound effects and shaping an eco-effective transition. Thomas Siderius, Kim Poldner, Reconsidering the Circular Economy Rebound effect: Propositions from a case study of the Dutch Circular Textile Valley, Journal of Cleaner Production, Volume 293, 2021, 125996, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2021.125996.
DOCUMENT
The textiles and apparel industry is a major contributor to economic development while at the same time being one of the most polluting industries due to its lengthy supply chain and resource intensive production operations. To address these sustainability challenges, digitalization is seen as one of the potential solutions. Using the lens of sustainability and digitalization in Supply Chain Management (SCM), this paper analyses the sustainability and digitalization status of Dutch textile and apparel firms. We used a mixed methodology of quantitative text mining of 94 Dutch textile and apparel firms as well as qualitative thematic and coding analysis of experts’ views and opinions on sustainability and digitalization in the Dutch textiles and apparel industry. Quantitative analysis of website data shows that Dutch textile and apparel firms predominantly communicate the environmental, to a lesser extent social, and least of all economic sustainability factors. Keyword analysis also shows that the use of technological keyword indicators is less prominent, while certain technologies such as IoT, sensors and blockchain correlate mostly to environmental sustainability factors. Moreover, qualitative analysis reveals that to address sustainability via digitalization, it is important to link sustainability goals to Key Performance Indicators, which requires data for traceability. We recommend firms to: (1) re-evaluate their business models and assess the extent traceability can be incorporated in their sustainability strategy; (2) enhance stakeholder collaboration within and outside the supply chain to utilize traceability; and (3) proactively use traceability information to improve transparency and accountability to meet legal requirements and address greenwashing. This study contributes to literature by showing the importance of traceability for (a) linking sustainability and digitalization in SCM, b) achieving the ultimate goals of transparency and accountability, and c) predicting demand and supply to address overproduction and waste in the textiles and apparel sector.
MULTIFILE
Re-structuring of a Dutch mono-industrial region; example of TwenteTable of contents of the chapter Introduction Geography and location of Twente Industrialization of Twente and development of the Textile Industry Decline of the Textile Industry Restructuring Twente: arguments for a regional innovation strategy Moving towards a more diversified economy Stronger co-operation between governments, universities, and industries The role of universities and the example of ‘Kennispark Twente’ Further regional and international co-operation Twente today
MULTIFILE
Phosphorus is an essential element for life, whether in the agricultural sector or in the chemical industry to make products such as flame retardants and batteries. Almost all the phosphorus we use are mined from phosphate rocks. Since Europe scarcely has any mine, we therefore depend on imported phosphate, which poses a risk of supply. To that effect, Europe has listed phosphate as one of its main critical raw materials. This creates a need for the search for alternative sources of phosphate such as wastewater, since most of the phosphate we use end up in our wastewater. Additionally, the direct discharge of wastewater with high concentration of phosphorus (typically > 50 ppb phosphorus) creates a range of environmental problems such as eutrophication . In this context, the Dutch start-up company, SusPhos, created a process to produce biobased flame retardants using phosphorus recovered from municipal wastewater. Flame retardants are often used in textiles, furniture, electronics, construction materials, to mention a few. They are important for safety reasons since they can help prevent or spread fires. Currently, almost all the phosphate flame retardants in the market are obtained from phosphate rocks, but SusPhos is changing this paradigm by being the first company to produce phosphate flame retardants from waste. The process developed by SusPhos to upcycle phosphate-rich streams to high-quality flame retardant can be considered to be in the TRL 5. The company seeks to move further to a TRL 7 via building and operating a demo-scale plant in 2021/2022. BioFlame proposes a collaboration between a SME (SusPhos), a ZZP (Willem Schipper Consultancy) and HBO institute group (Water Technology, NHL Stenden) to expand the available expertise and generate the necessary infrastructure to tackle this transition challenge.
The textile industry faces a significant environmental challenge, annually generating 45 million tons of waste cotton textiles, of which 75% are incinerated or sent to landfills, causing environmental harm. Additionally, 67% of garments are made of plastic fibers, and when disposed of in landfills, 5% of them turn into microplastics that can end up on our plates. Chicfashic proposes an innovative biotech process to address these issues by recovering and recycling plastic fibers while transforming natural fibers into bio-based molecules. These molecules are then used as secondary raw materials to produce bio-based pigments for textiles. The project aims to optimize this process and test it on a larger scale with the assistance of HAN BioCentre. This initiative aligns with Dutch government and EU regulations mandating textile recycling by 2050. The technology used is patent pending and does not involve the use of toxic chemicals or the release of harmful wastewater or fumes, contributing to a shift towards a more circular and sustainable textile industry by reintegrating natural colorants into textile production.
The DPP4CD project, “Digital Product Passport(s) for Circular Denim: From Pilot to Practice,” focuses on delivering pilot and scalable Digital Product Passports (DPPs) in the circular denim industry. This aligns with the upcoming European Ecodesign for Sustainable Products Regulation (ESPR), making DPPs mandatory for textiles from 2027. A DPP for circular denim should clearly detail material composition, production methods, repair records, and recycling options to meet EU rules like ESPR, Corporate Sustainability Reporting Directive (CSRD) and European Sustainability Reporting Standards (ESRS). It combines dynamic lifecycle data into a standard, interoperable system that boosts traceability, cuts SME admin burdens, and supports sustainable, circular practices. Led by Saxion and HvA, the multidisciplinary project is based on a real-world Dutch use case with MUD Jeans, a leader in circular denim. The project combines circular economy principles with existing digital technologies, working with partners such as tex.tracer, Tejidos Royo, bAwear, Denim Deal, MODINT, EuFSI and, GS1 Netherlands. Instead of developing new tools, the project applies scalable technologies (augmented DPP extension) and methods e.g. blockchain, life cycle assessments, and traceability standards to denim supply chains. The project defines legal, environmental, technical, and user requirements for DPPs in circular denim and designs a modular, data-driven, and ESPR-compliant system that integrates offline and online components while ensuring interoperability, affordability, reliability, accountability, and scalability. It develops a data framework for material tracking, supported by interoperable digital solutions to improve data-sharing and transparency. A pilot DPP with MUD Jeans will cover the full lifecycle from production to recycling, enabling scalable DPP. The project aims to address societal challenges related to circularity, ensure scalable and implementable solutions, and create a digital platform where knowledge can be developed, shared, and utilised. By combining circular practices with digital technologies, DPP4CD will help textile businesses transition towards sustainable, transparent, and future-proof supply chains.