In case of a major cyber incident, organizations usually rely on external providers of Cyber Incident Response (CIR) services. CIR consultants operate in a dynamic and constantly changing environment in which they must actively engage in information management and problem solving while adapting to complex circumstances. In this challenging environment CIR consultants need to make critical decisions about what to advise clients that are impacted by a major cyber incident. Despite its relevance, CIR decision making is an understudied topic. The objective of this preliminary investigation is therefore to understand what decision-making strategies experienced CIR consultants use during challenging incidents and to offer suggestions for training and decision-aiding. A general understanding of operational decision making under pressure, uncertainty, and high stakes was established by reviewing the body of knowledge known as Naturalistic Decision Making (NDM). The general conclusion of NDM research is that experts usually make adequate decisions based on (fast) recognition of the situation and applying the most obvious (default) response pattern that has worked in similar situations in the past. In exceptional situations, however, this way of recognition-primed decision-making results in suboptimal decisions as experts are likely to miss conflicting cues once the situation is quickly recognized under pressure. Understanding the default response pattern and the rare occasions in which this response pattern could be ineffective is therefore key for improving and aiding cyber incident response decision making. Therefore, we interviewed six experienced CIR consultants and used the critical decision method (CDM) to learn how they made decisions under challenging conditions. The main conclusion is that the default response pattern for CIR consultants during cyber breaches is to reduce uncertainty as much as possible by gathering and investigating data and thus delay decision making about eradication until the investigation is completed. According to the respondents, this strategy usually works well and provides the most assurance that the threat actor can be completely removed from the network. However, the majority of respondents could recall at least one case in which this strategy (in hindsight) resulted in unnecessary theft of data or damage. Interestingly, this finding is strikingly different from other operational decision-making domains such as the military, police and fire service in which there is a general tendency to act rapidly instead of searching for more information. The main advice is that training and decision aiding of (novice) cyber incident responders should be aimed at the following: (a) make cyber incident responders aware of how recognition-primed decision making works; (b) discuss the default response strategy that typically works well in several scenarios; (c) explain the exception and how the exception can be recognized; (d) provide alternative response strategies that work better in exceptional situations.
DOCUMENT
De laatste decennia is tijd een strategische concurrentiefactor geworden in de maakindustrie (Demeter, 2013; Godinho Filho et al., 2017a; Gromova, 2020). Naast tijdige levering verwacht de klant ook keuze, maatwerk, hoge kwaliteit en een lage prijs (Siong et al., 2018; Suri, 2020). Om de door de klant gewenste korte doorlooptijd te kunnen realiseren en daarbij ook te voldoen aan zijn andere eisen, zijn flexibiliteit en aanpassingsvermogen essentieel geworden (Godinho Filho et al., 2017b; Siong et al., 2018). Quick Response Manufacturing (QRM) heeft als doel de doorlooptijd te verkorten in productieomgevingen die gekenmerkt worden door een hoge variëteit in producten en maatwerk (Suri, 2020; Siong et al., 2018). QRM kent zijn oorsprong begin jaren negentig van de vorige eeuw (Suri, 2020) en vertoont sterke gelijkenis met lean manufacturing. Het verschil met lean manufacturing is echter dat QRM zich richt op bedrijven in een omgeving met veel productvariatie. Daarnaast heeft QRM nieuwe elementen toegevoegd, zoals Paired-cell Overlapping Loops of Cards with Authorization (POLCA) en Manufacturing Critical Path Time’ (MCT)’ (Godinho Filho et al., 2017b).
DOCUMENT
The inefficiency of maintaining static and long-lasting safety zones in environments where actual risks are limited is likely to increase in the coming decades, as autonomous systems become more common and human workers fewer in numbers. Nevertheless, an uncompromising approach to safety remains paramount, requiring the introduction of novel methods that are simultaneously more flexible and capable of delivering the same level of protection against potentially hazardous situations. We present such a method to create dynamic safety zones, the boundaries of which can be redrawn in real-time, taking into account explicit positioning data when available and using conservative extrapolation from last known location when information is missing or unreliable. Simulation and statistical methods were used to investigate performance gains compared to static safety zones. The use of a more advanced probabilistic framework to further improve flexibility is also discussed, although its implementation would not offer the same level of protection and is currently not recommended.
MULTIFILE
The dynamic inflow effect describes the unsteady aerodynamic response to fast changes in rotor loading due to the inertia of the wake. Fast changes in turbine loading due to pitch actuation or rotor speed transients lead to load overshoots. The phenomenon is suspected to be also relevant for gust situations; however, this was never shown, and thus the actual load response is also unknown. The paper’s objectives are to prove and explain the dynamic inflow effect due to gusts, and compare and subsequently improve a typical dynamic inflow engineering model to the measurements. An active grid is used to impress a 1.8m diameter model turbine with rotor uniform gusts of the wind tunnel flow. The influence attributed to the dynamic inflow effect is isolated from the comparison of two experimental cases. Firstly, dynamic measurements of loads and radially resolved axial velocities in the rotor plane during a gust situation are performed. Secondly, corresponding quantities are linearly interpolated for the gust wind speed from lookup tables with steady operational points. Furthermore,simulations with a typical blade element momentum code and a higher-fidelity free-vortex wake model are performed. Both the experiment and higher-fidelity model show a dynamic inflow effect due to gusts in the loads and axial velocities. An amplification of induced velocities causes reduced load amplitudes. Consequently, fatigue loading would be lower. This amplification originates from wake inertia. It is influenced by the coherent gust pushed through the rotor like a turbulent box. The wake is superimposed on that coherent gust box, and thus the inertia of the wake and consequently also the flow in the rotor plane is affected. Contemporary dynamic inflow models inherently assume a constant wind velocity. They filter the induced velocity and thus cannot predict the observed amplification of the induced velocity. The commonly used Øye engineering model predicts increased gust load amplitudes and thus higher fatigue loads. With an extra filter term on the quasi-steady wind velocity, the qualitative behaviour observed experimentally and numerically can be caught. In conclusion, these new experimental findings on dynamic inflow due to gusts and improvements to the Øye model enable improvements in wind turbine design by less conservative fatigue loads.
LINK
De zogenoemde “21th century skills” worden, aldus het Ministerie van Onderwijs, steeds belangrijker. Het zijn eigenschappen die we terugvinden in de eindtermen van vrijwel alle hbo-opleidingen en die – in de woorden van Donald Schön – de kern zijn van een “reflective practitioner” : een vakvrouw of –man, die zichzelf in complexe situaties kan sturen en daardoor productief blijft. Eerder onderzoek van het lectoraat Pedagogiek van de Beroepsvorming heeft aangetoond dat een leeromgeving gericht op zelfsturing aan drie condities moet voldoen: er moet sprake zijn van praktijkgestuurd onderwijs, studenten moeten de kans krijgen een dialoog aan te gaan over de zin en betekenis van hun ervaringen in het praktijkgestuurde onderwijs en studenten moeten medezeggenschap hebben over hun eigen leerproces. Met name het realiseren van een dialoog blijkt echter heel moeilijk te zijn. Zowel docenten als studenten (en ook de onderwijsmanagers) zijn gewend aan onderwijs waarin zin en betekenis nauwelijks ter discussie staat. Het gevolg is dat ze vooral gericht zijn op reproductief en niet op betekenis-gericht leren. Zelfsturing vereist evenwel deze laatste vorm van leren. Zelfsturing vereist een dialoog over de zin en betekenis van ervaringen die de student “raken”. Dergelijke ervaringen roepen veelal emoties op die in eerste instantie niet begrepen worden. Zin en betekenis zijn “geen dingen in een doosje”; ze worden gaandeweg duidelijk in een gesprek waarin de docent verklaart noch verheldert, maar samen met de student op zoek gaat naar de juiste woorden. Dat zijn woorden waarvan de student voelt dat ze haar in staat stellen iets uit te drukken dat voorheen nog niet onder woorden gebracht kon worden. In dit boek wordt vanuit verschillende perspectieven en op basis van empirisch onderzoek ingegaan op de vraag in hoeverre het hbo er in slaagt een dergelijke dialoog met haar studenten te realiseren. Tevens wordt stilgestaan bij methoden om zo’n dialoog te realiseren.
DOCUMENT
Limited evidence is available about (non)-representativeness of participants in health-promoting interventions. The Dutch Healthy Primary School of the Future (HPSF)-study is a school-based study aiming to improve health through altering physical activity and dietary behaviour, that started in 2015 (registered in ClinicalTrials.gov on14-06-2016, NCT02800616). The study has a response rate of 60%. A comprehensive non-responder analysis was carried out, and responders were compared with schoolchildren from the region and the Netherlands using a cross-sectional design. External sources were consulted to collect non-responder, regional, and national data regarding relevant characteristics including sex, demographics, health, and lifestyle. The Chi-square test, Mann-Whitney U test, or Student's t-test were used to analyse differences.
DOCUMENT
The dynamic inflow effect denotes the unsteady aerodynamic response to fast changes in rotor loading due to a gradual adaption of the wake. This does lead to load overshoots. The objective of the paper was to increase the understanding of that effect based on pitch step experiments on a 1.8 m diameter model wind turbine, which are performed in the large open jet wind tunnel of ForWind – University of Oldenburg. The flow in the rotor plane is measured with a 2D laser Doppler anemometer, and the dynamic wake induction factor transients in axial and tangential direction are extracted. Further, integral load measurements with strain gauges and hot-wire measurements in the near and close far wake are performed. The results show a clear gradual decay of the axial induction factors after a pitch step, giving the first direct experimental evidence of dynamic inflow due to pitch steps. Two engineering models are fitted to the induction factor transients to further investigate the relevant time constants of the dynamic inflow process. The radial dependency of the axial induction time constants as well as the dependency on the pitch direction is discussed. It is confirmed that the nature of the dynamic inflow decay is better described by two rather than only one time constant. The dynamic changes in wake radius are connected to the radial dependency of the axial induction transients. In conclusion, the comparative discussion of inductions, wake deployment and loads facilitate an improved physical understanding of the dynamic inflow process for wind turbines. Furthermore, these measurements provide a new detailed validation case for dynamic inflow models and other types of simulations.
LINK
The effect of infill panels on the response of RC frames subjected to seismic action is widely recognised and has been subject of numerous experimental investigations, while several attempts to model it analytically have been reported. In this paper, the implementation, within a fibre-based Finite Elements program, of an advanced double-strut nonlinear cyclic model for masonry panels is described. The accuracy of the model is first assessed through comparison with experimental results obtained from pseudo-dynamic tests of large or full-scale frame models. This is followed by a sensitivity study whereby the relative importance of each parameter necessary to calibrate the model is evaluated, so that guidance on the general employment of the latter can be given. Furthermore, a representative range of values for the geometrical and material properties of the infill panels has been also defined. 1.
LINK
Long-term care facilities are currently installing dynamic lighting systems with the aim to improve the well-being and behaviour of residents with dementia. The aim of this study was to investigate the implementation of dynamic lighting systems from the perspective of stakeholders and the performance of the technology. Therefore, a questionnaire survey was conducted with the management and care professionals of six care facilities. Moreover, light measurements were conducted in order to describe the exposure of residents to lighting. The results showed that the main reason for purchasing dynamic lighting systems lied in the assumption that the well-being and day/night rhythmicity of residents could be improved. The majority of care professionals were not aware of the reasons why dynamic lighting systems were installed. Despite positive subjective ratings of the dynamic lighting systems, no data were collected by the organizations to evaluate the effectiveness of the lighting. Although the care professionals stated that they did not see any large positive effects of the dynamic lighting systems on the residents and their own work situation, the majority appreciated the dynamic lighting systems more than the old situation. The light values measured in the care facilities did not exceed the minimum threshold values reported in the literature. Therefore, it seems illogical that the dynamic lighting systems installed in the researched care facilities will have any positive health effects.
DOCUMENT
The literature on how organizations respond to institutional pressure has shown that the individual decision-makers’ interpretation of institutional pressure played an important role in developing organizational responses. However, it has paid less attention to how this interpretation ultimately contributes to their range of organizational decisions when responding to the same institutional pressure. We address this gap by interviewing board members of U.S. and Dutch hospitals involved in adopting best practices regarding board evaluation. We found four qualitatively different cognitive frames that board members relied on to interpret institutional pressure, and which shaped their organizational response. We contribute to the literature on organizational response to institutional pressure by empirically investigating how decision-makers interpret institutional pressure, by suggesting prior experience and role definition as moderating factors of multidimensional cognitive frames, and by showing how these cognitive frames influence board members’ response to the same institutional pressure.
DOCUMENT