Exercise is one of the external factors associated with impairment of intestinal integrity, possibly leading to increased permeability and altered absorption. Here, we aimed to examine to what extent endurance exercise in the glycogen‐depleted state can affect intestinal permeability toward small molecules and protein‐derived peptides in relation to markers of intestinal function. Eleven well‐trained male volunteers (27 ± 4 years) ingested 40 g of casein protein and a lactulose/rhamnose (L/R) solution after an overnight fast in resting conditions (control) and after completing a dual – glycogen depletion and endurance – exercise protocol (first protocol execution). The entire procedure was repeated 1 week later (second protocol execution). Intestinal permeability was measured as L/R ratio in 5 h urine and 1 h plasma. Five‐hour urine excretion of betacasomorphin‐7 (BCM7), postprandial plasma amino acid levels, plasma fatty acid binding protein 2 (FABP‐2), serum pre‐haptoglobin 2 (preHP2), plasma glucagon‐like peptide 2 (GLP2), serum calprotectin, and dipeptidylpeptidase‐4 (DPP4) activity were studied as markers for excretion, intestinal functioning and recovery, inflammation, and BCM7 breakdown activity, respectively. BCM7 levels in urine were increased following the dual exercise protocol, in the first as well as the second protocol execution, whereas 1 h‐plasma L/R ratio was increased only following the first exercise protocol execution. FABP2, preHP2, and GLP2 were not changed after exercise, whereas calprotectin increased. Plasma citrulline levels following casein ingestion (iAUC) did not increase after exercise, as opposed to resting conditions. Endurance exercise in the glycogen depleted state resulted in a clear increase of BCM7 accumulation in urine, independent of DPP4 activity and intestinal permeability. Therefore, strenuous exercise could have an effect on the amount of food‐derived bioactive peptides crossing the epithelial barrier. The health consequence of increased passage needs more in depth studies.
From the article: "This article evaluates the application of blockchain technology to improve organic or fair-trade food traceability from “Farm to Fork” in light of European regulations. This study aims to shed light on the challenges in the organic food chain to overcome, the drivers for blockchain technology, and the challenges in current projects."
Despite changing attitudes towards animal testing and current legislation to protect experimental animals, the rate of animal experiments seems to have changed little in recent years. On May 15–16, 2013, the In Vitro Testing Industrial Platform (IVTIP) held an open meeting to discuss the state of the art in alternative methods, how companies have, can, and will need to adapt and what drives and hinders regulatory acceptance and use. Several key messages arose from the meeting. First, industry and regulatory bodies should not wait for complete suites of alternative tests to become available, but should begin working with methods available right now (e.g., mining of existing animal data to direct future studies, implementation of alternative tests wherever scientifically valid rather than continuing to rely on animal tests) in non-animal and animal integrated strategies to reduce the numbers of animals tested. Sharing of information (communication), harmonization and standardization (coordination), commitment and collaboration are all required to improve the quality and speed of validation, acceptance, and implementation of tests. Finally, we consider how alternative methods can be used in research and development before formal implementation in regulations. Here we present the conclusions on what can be done already and suggest some solutions and strategies for the future.