In this article we focus upon a division between generalized schools of philosophical and ethical thought about culture and conservation. There is an ongoing debate playing out over conservation between those who believe conservation threatens community livelihoods and traditional practices, and those who believe conservation is essential to protect nonhuman species from the impact of human development and population growth. We argue for reconciliation between these schools of thought and a cooperative push toward the cultivation of an environmentally-focused perspective that embraces not only social and economic justice but also concern for non-human species. Our goal is to underline the ethics and tangible benefits that may result from combining the cultural data and knowledge of the social sciences with understanding of environmental science and conservation. We highlight instances in which social scientists overlook their own anthropocentric bias in relationship to ecological justice, or justice for all species, in favor of exclusive social justice among people. We focus on the polemical stances of this debate in order to emphasize the importance of a middle road of cooperation that acknowledges the rights of human and nonhuman species, alike. In conclusion, we present an alternative set of ethics and research activities for social scientists concerned with conservation and offer ideas on how to reconcile the conflicting interests of people and the environment. https://doi.org/10.1016/j.biocon.2015.01.030 https://www.linkedin.com/in/helenkopnina/
MULTIFILE
This article will discuss philosophical debates on economic growth and environmental sustainability, the role of management responsibility, and the risk of subversion to business as usual. This discussion will be framed using the concepts of Cradle to Cradle (C2C) and Circular Economy about sustainable production. The case study illustrating the danger of subversion of these progressive models discussed here is based on the assignments submitted by Masters students as part of a course related to sustainable production and consumption at Leiden University. The evaluation of the supposedly best practice cases placed on the website of the Ellen MacArthur Foundation or those awarded Cradle to Cradle certificate has led some students to conclude that these cases illustrated green-washing. Larger implications of identified cases of green-washing for the field of sustainable business and ecological management are discussed. “This is a post-peer-review, pre-copyedit version of an article published in 'Philosophy of Management'. The final authenticated version is available online at: https://doi.org/10.1007/s40926-019-00108-x LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
The viability of novel network-level circular business models (CBMs) is debated heavily. Many companies are hesitant to implement CBMs in their daily practice, because of the various roles, stakes and opinions and the resulting uncertainties. Testing novel CBMs prior to implementation is needed. Some scholars have used digital simulation models to test elements of business models, but this this has not yet been done systematically for CBMs. To address this knowledge gap, this paper presents a systematic iterative method to explore and improve CBMs prior to actual implementation by means of agent-based modelling and simulation. An agent-based model (ABM) was co-created with case study participants in three Industrial Symbiosis networks. The ABM was used to simulate and explore the viability effects of two CBMs in different scenarios. The simulation results show which CBM in combination with which scenario led to the highest network survival rate and highest value captured. In addition, we were able to explore the influence of design options and establish a design that is correlated to the highest CBM viability. Based on these findings, concrete proposals were made to further improve the CBM design, from company level to network level. This study thus contributes to the development of systematic CBM experimentation methods. The novel approach provided in this work shows that agent-based modelling and simulation is a powerful method to study and improve circular business models prior to implementation.
The COVID19 pandemic highlighted the vulnerability in supply chain networks in the healthcare sector and the tremendous waste problem of disposable healthcare products, such as isolation gowns. Single-use disposable isolation gowns cause great ecological impact. Reusable gowns can potentially reduce climate impacts and improve the resilience of healthcare systems by ensuring a steady supply in times of high demand. However, scaling reusable, circular isolation gowns in healthcare organizations is not straightforward. It is impeded by economic barriers – such as servicing costs for each use – and logistic and hygiene barriers, as processes for transport, storage and safety need to be (re)designed. Healthcare professionals (e.g. purchasing managers) lack complete information about social, economic and ecological costs, the true cost of products, to make informed circular purchasing decisions. Additionally, the residual value of materials recovered from circular products is overlooked and should be factored into purchasing decisions. To facilitate the transition to circular procurement in healthcare, purchasing managers need more fine-grained, dynamic information on true costs. Our RAAK Publiek proposal (MODLI) addresses a problem that purchasing managers face – making purchasing decisions that factor in social, economic and ecological costs and future benefits from recovered materials. Building on an existing consortium that developed a reusable and recyclable isolation gown, we design and develop an open-source decision-support tool to inform circular procurement in healthcare organizations and simulate various purchasing options of non-circular and circular products, including products from circular cascades. Circular procurement is considered a key driver in the transition to a circular economy as it contributes to closing energy and material loops and minimizes negative impacts and waste throughout entire product lifecycles. MODLI aims to support circular procurement policies in healthcare organizations by providing dynamic information for circular procurement decision making.