In this chapter we move back in time, to when it was not an usance to base our city designs on the natural systems of water and ecology. By the end of the 1980s the dogma of separation of functions, and dividing the city in areas for working, living, leisure and traffic was slowly abandoned and especially the focus on the traffic system, more in particular the car, was leading to uproar. In this timeframe an alternative to apply the principles of nature in urban design was very new and, in the beginning, needed to be conquered on the traditionalists who would pertain using their old-school design standards. In this chapter the development story of Westerpark, and Heilaar-Steenakker is presented. This area in the western outskirts of the city of Breda, in the south of the Netherlands, was one of the first, maybe even the first to use knowledge about the water system, ecological typologies and nature as the basis for urban planning. This article starts with a description in sections two and three of the policy context at national level to illustrate the momentum of change from rationalism towards ecological planning. In section four the policy context in Breda in the early nineties is presented as the context within which the planning of Heilaar-Steenakker (Sect. 8.5) and Westerpark (Sect. 8.6) could be based in a strong sense of the natural processes of ecology and water that formed the landscape in history.
LINK
Urban delta areas require innovative and adaptive urban developments to face problems related with land scarcity and impacts of climate change and flooding. Floating structures offer the flexibility and multi-functionality required to efficiently face these challenges and demands. The impact of these structures on the environment, however, is currently unknown and research on this topic is often disregarded. This knowledge gap creates a difficulty for water authorities and municipalities to create a policy framework, and to regulate and facilitate the development of new projects.Monitoring the effects of floating structures on water quality and ecology has been difficult until now because of the poor accessibility of the water body underneath the structures. In this work, a remote controlled underwater drone equipped with water quality sensors and a video camera was used to monitor dissolved oxygen near and under floating structures. The collected data showed that most water quality parameters remain at acceptable levels, indicating that the current small scale floating structures do not have a significant influence on water quality. The underwater footage revealed the existence of a dynamic and diverse aquatic habitat in the vicinity of these structures, showing that floating structures can have a positive effect on the aquatic environment. Future floating structures projects therefore should be encouraged to proceed.
This article focuses on the role of ethical perspectives such as deep ecology and animal rights in relation to environmental education, arguing that such perspectives are well-placed to reposition students as responsible planetary citizens. We focus on the linkage between non-consequentialism, animal rights, and deep ecology in an educational context and discuss the broader issue of ethics in education. Finally, we discuss how the inclusion of deep ecology and animal rights perspectives would improve current environmental education programs by deepening the respect for nonhumans and their inclusion in the ethical community. https://www.linkedin.com/in/helenkopnina/
Climate change adaptation has influenced river management through an anticipatory governance paradigm. As such, futures and the power of knowing the future has become increasingly influential in water management. Yet, multiple future imaginaries co-exist, where some are more dominant that others. In this PhD research, I focus on deconstructing the future making process in climate change adaptation by asking ‘What river imaginaries exist and what future imaginaries dominate climate change adaptation in riverine infrastructure projects of the Meuse and Magdalena river?’. I firstly explore existing river imaginaries in a case study of the river Meuse. Secondly, I explore imaginaries as materialised in numerical models for the Meuse and Magdalena river. Thirdly, I explore the integration and negotiation of imaginaries in participatory modelling practices in the Magdalena river. Fourthly, I explore contesting and alternative imaginaries and look at how these are mobilised in climate change adaptation for the Magdalena and Meuse river. Multiple concepts stemming from Science and Technology Studies and Political Ecology will guide me to theorise the case study findings. Finally, I reflect on my own positionality in action-research which will be an iterative process of learning and unlearning while navigating between the natural and social sciences.
Urban open space has a huge impact on human health, well-being and urban ecosystems. One of the open spaces where the environmental and ecological challenges of cities manifest the most is the urban riverfront, often characterised by fragmented land use, lack of accessibility, heavy riverside vehicular traffic, and extreme degradation of river hydrology and ecology. More often than not, the current spatial design of the riverfront hinders rather than supports the delivery of ecosystem services and, in consequence, its potential to improve the health and well-being of urban inhabitants is diminished. Hence, the design of riverside open spaces is crucial. Urban and landscape design in those spaces requires instruments that can aid designers, planners, decision-makers and stakeholders in devising spatial interventions that integrate complex environmental and ecological goals in high quality public space design. By recognising the multiple environmental and ecological benefits of green space and water in the city, the project “I surf” applies a set of four design instruments, namely the Connector, the Sponge, the Integrator, and the Scaler. I surf is a three-phased project that tests, validates and updates these instruments through a design-driven research methodology involving two design workshops and expert meetings addressing three different riverside urban spaces in Amsterdam: in the Ij waterfront, along River Amstel, and on a site located on the canal network. The project concludes with an updated and transferrable instrument set available for urban and landscape design applications in Amsterdam and in other Dutch cities crossed by rivers.
Social enterprises (SEs) can play an important role in addressing societal problems. SEs are businesses whose primary objective is to generate social impact (e.g. well-being, social wealth and cohesion, and ecology) through a market-based model. SEs achieve this through a hybrid business model, trading-off financial and social value creation objectives. SEs typically face higher costs, for example because of ethical sourcing principles and/or production processes centering around the needs of workers who are vulnerable or hard-to-employ. This results in SEs’ struggling to scale-up due to their relatively costly operating model. Traditional management techniques are not always appropriate, as they do not take into account the tensions between financial and social value creation objectives of SEs. Our project examines how continuous improvement, and in particular the philosophy and tools of Lean can be harnessed to improve SEs competitiveness. Lean organizations share many values with SEs, such as respect for people, suggesting a good fit between the values and principles of Lean and those of SEs. The consortium for this project is a cooperation between the research groups Improving Business and New Marketing of the Center of Expertise Well-Being Economy and New Entrepreneurship and the minor Continuous Improvement of AVANS Hogeschool, and the SME companies Elliz in Company and Ons Label. The project consists of two phases, an exploratory phase during which the question “in what ways can the philosophy and tools of Lean be used by Social Enterprises?” will be addressed. Interviews and focus groups will be conducted with multiple SEs (not only partners). Participant observation will be conducted by the students of the minor Continuous Improvement at the partner SEs. During the second phase, the implementation of the identified principles and tools will be operationalized through a roadmap. Action research will be conducted in cooperation with the partner SEs.