Why cities need economic intelligenceThe economies of Europe’s cities are changingfast, and it is not easy to predict which segmentsof the local economy will grow and which oneswill decline. Yet, cities must make decisions as towhere to invest, and face a number of questionsthat are difficultto answer:Where dowe putour bets? Should we go for biotech, ICT, or anyother sector that may have growth potential?Do we want to attract large foreign companies,or rather support our local indigenous smallerfirms, ormustwe promotethestart-up scene?Or is it better not to go for any particularindustry but just improve the quality of lifein the city, hoping that this will help to retainskilled people and attract high tech firms?
MULTIFILE
People tend to be hesitant toward algorithmic tools, and this aversion potentially affects how innovations in artificial intelligence (AI) are effectively implemented. Explanatory mechanisms for aversion are based on individual or structural issues but often lack reflection on real-world contexts. Our study addresses this gap through a mixed-method approach, analyzing seven cases of AI deployment and their public reception on social media and in news articles. Using the Contextual Integrity framework, we argue that most often it is not the AI technology that is perceived as problematic, but that processes related to transparency, consent, and lack of influence by individuals raise aversion. Future research into aversion should acknowledge that technologies cannot be extricated from their contexts if they aim to understand public perceptions of AI innovation.
LINK
With artificial intelligence (AI) systems entering our working and leisure environments with increasing adaptation and learning capabilities, new opportunities arise for developing hybrid (human-AI) intelligence (HI) systems, comprising new ways of collaboration. However, there is not yet a structured way of specifying design solutions of collaboration for hybrid intelligence (HI) systems and there is a lack of best practices shared across application domains. We address this gap by investigating the generalization of specific design solutions into design patterns that can be shared and applied in different contexts. We present a human-centered bottom-up approach for the specification of design solutions and their abstraction into team design patterns. We apply the proposed approach for 4 concrete HI use cases and show the successful extraction of team design patterns that are generalizable, providing re-usable design components across various domains. This work advances previous research on team design patterns and designing applications of HI systems.
MULTIFILE
In the past decades, we have faced an increase in the digitization, digitalization, and digital transformation of our work and daily life. Breakthroughs of digital technologies in fields such as artificial intelligence, telecommunications, and data science bring solutions for large societal questions but also pose a new challenge: how to equip our (future)workforce with the necessary digital skills, knowledge, and mindset to respond to and drive digital transformation?Developing and supporting our human capital is paramount and failure to do so may leave us behind on individual (digital divide), organizational (economic disadvantages), and societal level (failure in addressing grand societal challenges). Digital transformation necessitates continuous learning approaches and scaffolding of interdisciplinary collaboration and innovation practices that match complex real-world problems. Research and industry have advocated for setting up learning communities as a space in which (future) professionals of different backgrounds can work, learn, and innovate together. However, insights into how and under which circumstances learning communities contribute to accelerated learning and innovation for digital transformation are lacking. In this project, we will study 13 existing and developing learning communities that work on challenges related to digital transformation to understand their working mechanisms. We will develop a wide variety of methods and tools to support learning communities and integrate these in a Learning Communities Incubator. These insights, methods and tools will result in more effective learning communities that will eventually (a) increase the potential of human capital to innovate and (b) accelerate the innovation for digital transformation
The objective of DIGIREAL-XL is to build a Research, Development & Innovation (RD&I) Center (SPRONG GROUP, level 4) on Digital Realities (DR) for Societal-Economic Impact. DR are intelligent, interactive, and immersive digital environments that seamlessly integrate Data, Artificial Intelligence/Machine Learning, Modelling-Simulation, and Visualization by using Game and Media Technologies (Game platforms/VR/AR/MR). Examples of these DR disruptive innovations can be seen in many domains, such as in the entertainment and service industries (Digital Humans); in the entertainment, leisure, learning, and culture domain (Virtual Museums and Music festivals) and within the decision making and spatial planning domain (Digital Twins). There are many well-recognized innovations in each of the enabling technologies (Data, AI,V/AR). However, DIGIREAL-XL goes beyond these disconnected state-of-the-art developments and technologies in its focus on DR as an integrated socio-technical concept. This requires pre-commercial, interdisciplinary RD&I, in cross-sectoral and inter-organizational networks. There is a need for integrating theories, methodologies, smart tools, and cross-disciplinary field labs for the effective and efficient design and production of DR. In doing so, DIGIREAL-XL addresses the challenges formulated under the KIA-Enabling Technologies / Key Methodologies for sectoral and societal transformation. BUas (lead partner) and FONTYS built a SPRONG group level 4 based on four pillars: RD&I-Program, Field Labs, Lab-Infrastructure, and Organizational Excellence Program. This provides a solid foundation to initiate and execute challenging, externally funded RD&I projects with partners in SPRONG stage one ('21-'25) and beyond (until' 29). DIGIREAL-XL is organized in a coherent set of Work Packages with clear objectives, tasks, deliverables, and milestones. The SPRONG group is well-positioned within the emerging MINDLABS Interactive Technologies eco-system and strengthens the regional (North-Brabant) digitalization agenda. Field labs on DR work with support and co-funding by many network organizations such as Digishape and Chronosphere and public, private, and societal organizations.
The objective of DIGIREAL-XL is to build a Research, Development & Innovation (RD&I) Center (SPRONG GROUP, level 4) onDigital Realities (DR) for Societal-Economic Impact. DR are intelligent, interactive, and immersive digital environments thatseamlessly integrate Data, Artificial Intelligence/Machine Learning, Modelling-Simulation, and Visualization by using Gameand Media Technologies (Game platforms/VR/AR/MR). Examples of these DR disruptive innovations can be seen in manydomains, such as in the entertainment and service industries (Digital Humans); in the entertainment, leisure, learning, andculture domain (Virtual Museums and Music festivals) and within the decision making and spatial planning domain (DigitalTwins). There are many well-recognized innovations in each of the enabling technologies (Data, AI,V/AR). However, DIGIREAL-XL goes beyond these disconnected state-of-the-art developments and technologies in its focus on DR as an integrated socio-technical concept. This requires pre-commercial, interdisciplinary RD&I, in cross-sectoral andinter-organizational networks. There is a need for integrating theories, methodologies, smart tools, and cross-disciplinaryfield labs for the effective and efficient design and production of DR. In doing so, DIGIREAL-XL addresses the challengesformulated under the KIA-Enabling Technologies / Key Methodologies for sectoral and societal transformation. BUas (lead partner) and FONTYS built a SPRONG group level 4 based on four pillars: RD&I-Program, Field Labs, Lab-Infrastructure, and Organizational Excellence Program. This provides a solid foundation to initiate and execute challenging, externally funded RD&I projects with partners in SPRONG stage one ('21-'25) and beyond (until' 29). DIGIREAL-XL is organized in a coherent set of Work Packages with clear objectives, tasks, deliverables, and milestones. The SPRONG group is well-positioned within the emerging MINDLABS Interactive Technologies eco-system and strengthens the regional (North-Brabant) digitalization agenda. Field labs on DR work with support and co-funding by many network organizations such as Digishape and Chronosphere and public, private, and societal organizations