Background: Body composition measurements provide importanti nformation about physical fitness and nutritional status. People with severe intellectual and visual disabilities (SIVD) have an increased risk for altered body composition. Bioelectrical impedance analysis (BIA) has been evidenced as a reliable and non-invasive method to assess body composition in healthy persons and various patient populations; however, currently, there is no feasible method available to determine body composition in people with SIVD.In this study, therefore, we aimed to assess the feasibility of BIA measurements in persons with SIVD. Methods: In 33 participants with SIVD and Gross Motor Functioning Classification System (GMFCS) Scale I, II, III, or IV, two BIA measurements were sequentially performed employing Resistance and Reactance in Ohm and fat-free mass (FFM) in kg as outcome variables, utilizing the Bodystat QuadScan 4000. Feasibility was considered sufficient if >=80% of the first measurement was performed successfully. Agreement between two repeated measurements was determined by using the paired t-test and Intraclass Correlation Coefficient (ICC; two way random, absolute agreement). Bland–Altman analyses were utilized to determine limits of agreement (LOAs) and systematic error. Agreement was considered acceptable if LOAs were <10% of the mean of the first measurement.
DOCUMENT
Rationale: Diagnosis of sarcopenia in older adults is essential for early treatment in clinical practice. Bio-electrical impedanceanalysis (BIA) may be a valid means to assess appendicular lean mass (ALM) in older adults, but limited evidence is available.Therefore, we aim to evaluate the validity of BIA to assess ALM in older adults.Methods: In 215 community dwelling older adults (age ≥ 55 years), ALM was measured by BIA (Tanita MC-780; 8-points) andcompared with dual-energy X-ray absorptiometry (DXA, Hologic Discovery A) as reference. Validity for assessing absolute values ofALM was evaluated by: 1) bias (mean difference), 2) percentage of accurate predictions (within 5% of DXA values), 3) individualerror (root mean squared error (RMSE), mean absolute deviation), 4) limits of agreement (Bland-Altman analysis). For diagnosis oflow ALM, the lowest quintile of ALM by DXA was used (below 21.4 kg for males and 15.4 for females). Sensitivity and specificityof detecting low ALM by BIA were assessed.Results: Mean age of the subjects was 71.9 ± 6.4, with a BMI of 25.8 ± 4.2 kg/m2, and 70% were females. BIA slightlyunderestimated ALM compared to DXA with a mean bias of -0.6 ± 0.2 kg. The percentage accurate predictions was 54% withRMSE 1.6 kg and limits of agreements -3.0 – +1.8 kg. Sensitivity was 79%, indicating that 79% of subjects with low ALMaccording to DXA also had low ALM with the BIA. Specificity was 90%, indicating that 90% of subjects with ‘no low’ ALMaccording to DXA also had ‘no low’ ALM with the BIA.Conclusions: This comparison showed a poor validity of BIA to assess absolute values of ALM, but a reasonable sensitivity andspecificity to diagnose a low level of ALM in community-dwelling older adults in clinical practice.
DOCUMENT
Background: The diagnosis of sarcopenia is essential for early treatment of sarcopenia in older adults, for which assessment of appendicular lean mass (ALM) is needed. Multi-frequency bio-electrical impedance analysis (MF-BIA) may be a valid assessment tool to assess ALM in older adults, but the evidences are limited. Therefore, we validated the BIA to diagnose low ALM in older adults.Methods: ALM was assessed by a standing-posture 8 electrode MF-BIA (Tanita MC-780) in 202 community-dwelling older adults (age ≥ 55 years), and compared with dual-energy X-ray absorptiometry (DXA) (Hologic Inc., Marlborough, MA, United States; DXA). The validity for assessing the absolute values of ALM was evaluated by: (1) bias (mean difference), (2) percentage of accurate predictions (within 5% of DXA values), (3) the mean absolute error (MAE), and (4) limits of agreement (Bland-Altman analysis). The lowest quintile of ALM by DXA was used as proxy for low ALM (< 22.8 kg for men, < 16.1 kg for women). Sensitivity and specificity of diagnosing low ALM by BIA were assessed.Results: The mean age of the subjects was 72.1 ± 6.4 years, with a BMI of 25.4 ± 3.6 kg/m2, and 71% were women. BIA slightly underestimated ALM compared to DXA with a mean bias of -0.6 ± 1.2 kg. The percentage of accurate predictions was 54% with a MAE of 1.1 kg, and limits of agreement were -3.0 to + 1.8 kg. The sensitivity for ALM was 80%, indicating that 80% of subjects who were diagnosed as low ALM according to DXA were also diagnosed low ALM by BIA. The specificity was 90%, indicating that 90% of subjects who were diagnosed as normal ALM by DXA were also diagnosed as normal ALM by the BIA.Conclusion: This comparison showed a poor validity of MF-BIA to assess the absolute values of ALM, but a reasonable sensitivity and specificity to recognize the community-dwelling older adults with the lowest muscle mass.
DOCUMENT
The number of light commercial vehicles (LCV) in cities is growing, which puts increasing pressure on the livability of cities. Freight vehicles are large contributors to polluting air and CO2 emissions and generate problems in terms of safety, noise and loss of public space. Small electric freight vehicles and cargo bikes can offer a solution, as they take less space, can maneuver easily and do not emit local pollution. There is an increasing interest in these vehicle, called light electric freight vehicles (LEFV’s), among logistic service providers in European cities. However, various technical and operational challenges impede large scale implementation. Within the two-year LEVV-LOGIC project, (2016-2018) the use of LEFV’s for city logistics is explored. The project combines expertise on logistics, vehicle design, charging infrastructure and business modelling to find the optimal concept in which LEFV’s can be a financial competitive alternative for conventional freight vehicles. This contribution to EVS30 will present the project’s first year results, showing the guideline for and the applied design of LEFV for future urban city logistics.
DOCUMENT
Rationale: Diagnosis of sarcopenia in older adults is essential for early treatment in clinical practice. Bio-electrical impedance analysis (BIA) may be a valid means to assess appendicular lean mass (ALM) in older adults, but limited evidence is available. Therefore, we aim to evaluate the validity of BIA to assess ALM in older adults.Methods: In 215 community dwelling older adults (age ≥ 55 years), ALM was measured by BIA (Tanita MC-780; 8-points) and compared with dual-energy X-ray absorptiometry (DXA, Hologic Discovery A) as reference. Validity for assessing absolute values of ALM was evaluated by: 1) bias (mean difference), 2) percentage of accurate predictions (within 5% of DXA values), 3) individual error (root mean squared error (RMSE), mean absolute deviation), 4) limits of agreement (Bland-Altman analysis). For diagnosis of low ALM, the lowest quintile of ALM by DXA was used (below 21.4 kg for males and 15.4 for females). Sensitivity and specificity of detecting low ALM by BIA were assessed.Results: Mean age of the subjects was 71.9 ± 6.4, with a BMI of 25.8 ± 4.2 kg/m2, and 70% were females. BIA slightly underestimated ALM compared to DXA with a mean bias of -0.6 ± 0.2 kg. The percentage accurate predictions was 54% with RMSE 1.6 kg and limits of agreements −3.0 to +1.8 kg. Sensitivity was 79%, indicating that 79% of subjects with low ALM according to DXA also had low ALM with the BIA. Specificity was 90%, indicating that 90% of subjects with ‘no low’ ALM according to DXA also had ‘no low’ ALM with the BIA.Conclusions: This comparison showed a poor validity of BIA to assess absolute values of ALM, but a reasonable sensitivity and specificity to diagnose a low level of ALM in community-dwelling older adults in clinical practice.Disclosure of interest: None declared.
DOCUMENT
Rationale: Sarcopenia is a major problem and is common in community-dwelling elderly. In daily practice, there is need for low cost and easily assessable measurement tools to assess depletion of skeletal muscle (SM) mass, for example as one of the indicators of sarcopenia. Bio-electrical impedance analysis (BIA) is often used to estimate body composition, whereas ultrasound measurement is an upcoming and promising tool, as it is quick, easy to use and inexpensive in comparison with other tools that assess SM mass. Ultrasound could assess site-specific loss of SM mass and determine myoesteatosis. Therefore, in this pilot study we aimed to assess agreement between muscle thickness of rectus femoris (RF) by ultrasound and SM mass by BIA in an older population. Methods: Twenty-six older adults (mean± standard deviation (SD) age 64 ±5.0 y, 62% women) from the Hanze Health and Ageing Study were included. SM mass by BIA was estimated using the Janssen equation. Muscle thickness of RF was assessed by analyzing ultrasound images from the right leg. Two non-parametric tests were used for analysis. Correlation between ultrasound and BIA was assessed with Spearman Rho. Agreement was determined with Kendall’s coefficient of concordance (Kendall’s W). In both tests a score ≥ 0.7 was considered a strong correlation.Results: Mean (±SD) RF thickness was 18.9 (±3.8) mm. Median SM mass (Interquartile range) was 23.5 (20.8-34.7) kg. Correlation between RF thickness and SM mass was moderately positive (Spearman r=0.611; P = 0.001), whereas Kendall’s W showed a strong agreement (W= 0.835; P=0.002).Conclusion: Ultrasound measurement of RF showed an acceptable agreement with skeletal muscle mass assessed by BIA in our sample of older adults. Therefore, ultrasound could be a promising portable tool to estimate muscle size.
DOCUMENT
BACKGROUND & AIMS: Sufficient protein intake is of great importance in hemodialysis (HD) patients, especially for maintaining muscle mass. Daily protein needs are generally estimated using bodyweight (BW), in which individual differences in body composition are not accounted for. As body protein mass is best represented by fat free mass (FFM), there is a rationale to apply FFM instead of BW. The agreement between both estimations is unclear. Therefore, the aim of this study is to compare protein needs based on either FFM or BW in HD patients.METHODS: Protein needs were estimated in 115 HD patients by three different equations; FFM, BW and BW adjusted for low or high BMI. FFM was measured by multi-frequency bioelectrical impedance spectroscopy and considered the reference method. Estimations of FFM x 1.5 g/kg and FFM x 1.9 g/kg were compared with (adjusted)BW x 1.2 and x 1.5, respectively. Differences were assessed with repeated measures ANOVA and Bland-Altman plots.RESULTS: Mean protein needs estimated by (adjusted)BW were higher compared to those based on FFM, across all BMI categories (P < 0.01) and most explicitly in obese patients. In females with BMI >30, protein needs were 69 ± 17.4 g/day higher based on BW and 45 ± 9.3 g/day higher based on BMI adjusted BW, compared to FFM. In males with BMI >30, protein needs were 51 ± 20.4 g/day and 23 ± 20.9 g/day higher compared to FFM, respectively.CONCLUSIONS: Our data show large differences and possible overestimations of protein needs when comparing BW to FFM. We emphasize the importance of more research and discussion on this topic.
DOCUMENT
This paper presents a mixed methods study in which 77 students and 3 teachers took part, that investigated the practice of Learning by Design (LBD). The study is part of a series of studies, funded by the Netherlands Organisation for Scientific Research (NWO), that aims to improve student learning, teaching skills and teacher training. LBD uses the context of design challenges to learn, among other things, science. Previous research showed that this approach to subject integration is quite successful but provides little profit regarding scientific concept learning. Perhaps, when the process of concept learning is better understood, LBD is a suitable method for integration. Through pre- and post-exams we measured, like others, a medium gain in the mastery of scientific concepts. Qualitative data revealed important focus-related issues that impede concept learning. As a result, mainly implicit learning of loose facts and incomplete concepts occurs. More transparency of the learning situation and a stronger focus on underlying concepts should make concept learning more explicit and coherent.
DOCUMENT
A low-cost sensornode is introduced to monitor the 5G EMF exposure in the Netherlands for the four FR1 frequency bands. The sensornode is validated with in-lab measurements both with CW signals as for QAM signals and perform for both cases and for all frequency bands an error less than 1 dB for a dynamic range of 40 dB. This sensor is a follow up of the earlier version of our previously developed sensor and have substantial improvements in terms of linearity, error, and stability.
DOCUMENT