Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-8, 147-154, 2014www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-8/147/2014/doi:10.5194/isprsarchives-XL-8-147-2014Integrated flood disaster management and spatial information: Case studies ofNetherlands and IndiaS. Zlatanova1, T. Ghawana2, A. Kaur2, and J. M. M. Neuvel31Faculty of Architecture, Jullianalaan, TU Delft, 134, 2628BL Delft, the Netherlands2Centre for Disaster Management Studies, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi, P.O. Box-110078, India3Saxion University of Applied Sciences, Risk management, Handelskade 75, 7417 DH Deventer, the NetherlandsKeywords: Floods, Spatial Information Infrastructure, GIS, Risk Management, Emergency Management Abstract. Spatial Information is an integral part of flood management practices which include risk management &emergency response processes. Although risk & emergency management activities have their own characteristics, forexample, related to the time scales, time pressure, activities & actors involved, it is still possible to identify at least onecommon challenge that constrains the ability of risk & emergency management to plan for & manage emergencieseffectively and efficiently i.e. the need for better information. Considering this aspect, this paper explores flood managementin Netherlands& India with an emphasis on spatial information requirements of each system. The paper examines theactivities, actors & information needs related to flood management. Changing perspectives on flood management inNetherlands are studied where additional attention is being paid to the organization and preparation of flood emergencymanagement. Role of different key actors involved in risk management is explored. Indian Flood management guidelines, byNational Disaster Management Authority, are analyzed in context of their history, institutional framework, achievements andgaps. Flood Forecasting System of Central Water Commission of India is also analyzed in context of spatial dimensions.Further, information overlap between risk & emergency management from the perspectives of spatial planners & emergencyresponders and role of GIS based modelling / simulation is analyzed. Finally, the need for an integrated spatial informationstructure is explained & discussed in detail. This examination of flood management practices in the Netherlands and Indiawith an emphasis on the required spatial information in these practices has revealed an increased recognition of the stronginterdependence between risk management and emergency response processes. Consequently, the importance of anintegrated spatial information infrastructure that facilitates the process of both risk and emergency management isaddressed.Conference Paper (PDF, 1063 KB) Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-8, 147-154, 2014www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-8/147/2014/doi:10.5194/isprsarchives-XL-8-147-2014Integrated flood disaster management and spatial information: Case studies ofNetherlands and IndiaS. Zlatanova1, T. Ghawana2, A. Kaur2, and J. M. M. Neuvel31Faculty of Architecture, Jullianalaan, TU Delft, 134, 2628BL Delft, the Netherlands2Centre for Disaster Management Studies, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi, P.O. Box-110078, India3Saxion University of Applied Sciences, Risk management, Handelskade 75, 7417 DH Deventer, the NetherlandsKeywords: Floods, Spatial Information Infrastructure, GIS, Risk Management, Emergency ManagementAbstract. Spatial Information is an integral part of flood management practices which include risk management &emergency response processes. Although risk & emergency management activities have their own characteristics, forexample, related to the time scales, time pressure, activities & actors involved, it is still possible to identify at least onecommon&
MULTIFILE
The COVID-19 pandemic has forced higher education (HE) to shift to emergency remote teaching (ERT), subsequently influencing academic belonging and social integration, as well as challenging students' engagement with their studies. This study investigated influences on student engagement during ERT, based on student resilience. Serial mediation analyses were used to test the predictive effects between resilience, academic belonging, social integration, and engagement.
MULTIFILE
This paper presents the design and the results of a comparative study of multidisciplinary on-scene command teams at work in virtual emergency training exercises. The principal goals of the study were to understand how "on-scene command teams" coordinate on multidisciplinary objectives and tasks, and how the manner in which this is done affects their performance. The study involved 20 on-scene command teams consisting of various individuals, such as police, fire and medical services personnel, municipal officers and infrastructure operators, drawn from a Safety Region in The Netherlands. Integrated video recordings by five synchronized cameras captured the coordination processes during the virtual exercises. The integrated and synchronized video recordings were then transformed into numerical data for analysis. Performance was operationalized by scoring the progress and completion of emergency management tasks for which individual members and/or teams as a whole were responsible. Team coordination was operationalized using network centrality and density measures. The significant findings are the following: (i) emergency management performance and coordination patterns within and among on-scene command teams have considerable variation; and (ii) teams that use less coordination during the intermediate phases of emergency management perform significantly better than teams that do not, moreover, actors who have central positions in a network are better able to achieve their performance goals.
LINK
Public safety is under enormous pressure. Demonstrations regularly result in riots and VIPs are often threatened even at their homes ! Criminal graffiti-gangs are threatening security professionals and costing the Dutch railways (NS), causing a loss of 10 M€ yearly. The safety incidents often escalate quickly, therefore, they require a very quick and correct scaling up of the security professionals. To do so, it is necessary for the security professionals to get very quick and accurate overview of the evolving situation using Mobile Drone intervention unit for quick response (Mobi Dick). The successfully completed project The Beast (9/11) has delivered a universal docking station with an automatic security drone. The drone takes off from a permanently installed docking station. Nest Fly emerged as a startup from this RAAK project, and it has already developed the prototype further to a first product. Based on extensive interaction with security professionals, it has been concluded that a permanently installed docking station is not suitable for all emergency cases. Therefore, a mobile, car-roof top mounted, docking station with a ready-for-take-off drone is required for the more severe and quickly escalating incidents. These situations require a drone taking off from the car-roof top mounted docking station while the vehicles continue to drive towards the incident. In this RAAK KIEM, a feasibility study will be executed by developing a car-roof top docking station. The concept will functionally be designed within the project (task 1). The two required subsystems car roof docking station (task 2) and dynamic take-off & landing (task 3) will technically be developed and integrated (task 4). The outcome of the experiments in this task will show the feasibly of the idea. Task 5 will ensure the results are disseminated in new cooperation’s, publications, and educational products.