The purpose of this paper is to perform a metaphorical analysis of knowledge as energy. This paper is based on a theoretical research concerning the nature, perception, basic laws and challenges brought up by these fundamental concepts of knowledge and energy. The metaphorical analysis of knowledge and intellectual capital has been initiated by Daniel Andriessen and his findings have been presented in several seminal works (Andriessen, 2006; 2008; Andriessen and Boom, 2007). In his work, Andriessen concluded we need to find new metaphors for knowledge. In our theoretical research we shall consider the knowledge as energy metaphor, with energy as the source domain, and knowledge as the target domain, and we are interested in identifying the metaphorical semantic kernel and the limitations of this analysis. The semantic kernel contains: (1) the concept of field as a nonuniform and nonlinear distribution of knowledge; (2) dynamics of potential and kinetic forms of manifestations; (3) dynamics of work and heat, and (4) entropy and syntropy process characteristics. Limitations of this analysis come from the conservation laws of energy transformation which cannot be applied to the knowledge domain.
Social scientists of conservation typically address sources of legitimacy of conservation policies in relation to local communities’ or indigenous land rights, highlighting social inequality and environmental injustice. This chapter reflects on the underlying ethics of environmental justice in order to differentiate between various motivations of conservation and its critique. Conservation is discussed against the backdrop of two main ethical standpoints: preservation of natural resources for human use, and protection of nature for its own sake. These motivations will be examined highlighting mainstream conservation and alternative deep ecology environmentalism. Based on this examination, this chapter untangles concerns with social and ecological justice in order to determine how environmental and human values overlap, conflict, and where the opportunity for reconciliation lies, building bridges between supporters of social justice and conservation. https://www.springer.com/gp/book/9783319713113#aboutBook LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Reducing energy consumption in urban households is essential for reaching the necessary climate research and policy targets for CO2 reduction and sustainability. The dominant approach has been to invest in technological innovations that increase household energy efficiency. This article moves beyond this approach, first by emphasising the need to prioritise reducing energy demand over increasing energy efficiency and, second, by addressing the challenge of energy consumption at the level of the community, not the individual household. It argues that energy consumption is shaped in and by social communities, which construct consciousness of the energy implications of lifestyle choices. By analysing a specific type of community, a digital community, it looks at the role that communication on online discussion boards plays in the social process of questioning energy needs and shaping a “decent lifestyle”. The article explores three social processes of community interaction around energy practices – coercive, mimetic, and normative – questioning the ways in which they contribute to the activation of energy discursive consciousness. In conclusion, the article reflects on the potential implications of these social processes for future research and interventions aimed at reducing energy demand. To illustrate how the three selected social processes influence one another, the article builds on the results of a research project conducted in Amsterdam, analysing the potential contribution of online discussion boards in shaping energy norms in the Sustainable Community of Amsterdam Facebook group.
Digitalisation has enabled businesses to access and utilise vast amounts of data. Business data analytics allows companies to employ the most recent and relevant data to comprehend situations and enhance decision-making. While the value of data itself is limited, substantial value can be directly or indirectly uncovered from data. This process is referred to as data monetisation. The most successful stories of data monetisation often originate from large corporations, as they have adequate resources to monetise their data. Notably, many such cases arise from prominent Big Tech companies in North America. In contrast, small and medium-sized enterprises (SMEs) have lagged behind in utilising their digital data assets effectively. They are frequently constrained by limited resources to build up capabilities and fully exploit their data. This places them at a strategic disadvantage, particularly as digitalisation is progressively reshaping markets and competitive relationships. Furthermore, the use of digital technologies and data are important in addressing societal challenges such as energy conservation, circularity, and the ageing of the population. This lag has been highlighted by SMEs we have engaged with, where managing directors have indicated their desire to operate based on data, but their companies lack the know-how and are unsure of ‘where to start’. Together with eight SMEs and other partners, we have defined a research project to gain insight into the potential and obstacles of data monetisation in SMEs. More specifically, we will explore how SMEs can transform data into strategic assets and create value. We attempt to demonstrate the journey of data monetisation and illustrate different possibilities to create value from data in SMEs. We will take a holistic approach to examine different aspects of data monetisation and their associations. The outcomes of this project are both practical and academic, such as an SME handbook, academic papers, and case studies.
A major challenge for the Netherlands is its transition to a sustainable society: no more natural gas from Groningen to prevent earthquakes, markedly reduced emissions of the greenhouse gas carbon dioxide to stop and invert climate change, on top of growth of electricity in society. Green gas, i.e. biogas suitable for the Dutch gas grid, is supposed to play a major role in the future energy transition, provided sufficient green gas is produced. This challenge has been identified as urgent by professional, academic and private parties and has shaped this project. In view of the anticipated pressure on biomass (availability, alternative uses), the green gas yield from difficult-to-convert biomass by anaerobic digestion should be improved. As typically abundant and difficult-to-convert biomass, grass from road verges and nature conservation areas has been selected. Better conversion of grass will be established with the innovative use of new consortia of (rumen) micro-organisms that are adapted or adaptable to grass degradation. Three-fold yield increase is expected. This is combined with innovative inclusion of oxygen in the digestion process. Next green hydrogen is used to convert carbon dioxide from digestion and maximize gas yield. Appropriate bioreactors increasing the overall methane production rate will be designed and evaluated. In addition, new business models for the two biogas technologies are actively developed. This all will contribute to the development of an appropriate infrastructure for a key topic in Groningen research and education. The research will help developing an appropriate research culture integrated with at least five different curricula at BSc and MSc level, involving six professors and one PhD student. The consortium combines three knowledge institutes, one large company, three SMEs active in biogas areas and one public body. All commit to more efficient conversion of difficult-to-convert biomass in the solid body of applied research proposed here.