As many in society work towards global sustainability, we live at a time when efforts to conserve biodiversity and geodiversity, and combat climate change, take place simultaneously with land grabs by large corporations, food insecurity, and human displacement through an ecological breakdown. Many of us seek to reconcile more-than-human nature and human nature and to balance intrinsic value and the current human expansion phase. These and other challenges will fundamentally alter the way people, depending on their worldview and ethics, relate to communities and the environment. While environmental problems cannot be seen as purely ecological because they always involve people, who bring to the environmental table their different assumptions about nature and culture, so are social problems connected to environmental constraints. Similarly, social problems are fundamentally connected to environmental constraints and ecological health. While nonhumans cannot bring anything to this negotiating table, the distinct perspective of this book is that there is a need to consider the role of nonhumans as equally important stakeholders – albeit without a voice. This book develops an argument that human-environmental relationships are set within ecological reality and ecological ethics. Rather than being mutually constitutive processes, humans have obligate dependence on nature, not vice versa. We argue that over-arching ecological ethics is necessary to underpin conservation in the long-term. This requires a holistic ‘justice’, where both social justice (for humans) and ecological justice (for nature) are entwined. However, given the escalating environmental crisis and major extinction event we face, and given that social justice has been dominant for centuries, we believe that in many cases ecojustice will need to be prioritized. This will depend on the situation, but we feel that under ecological ethics, holistic ethics cannot always allow social justice to dominate, hence there is an urgent need to prioritize ecojustice today. Accordingly, this book will deal with questions of both social and ecological justice, putting forth the idea that justice for both humans and nonhumans and their habitats can only be achieved simultaneously. This book will explore the following questions: What is the relationship between social and ecological justice? How might we integrate social and ecological justice? What are the major barriers to achieving this simultaneous justice? How can these barriers be overcome? What are the major debates in conservation relevant to this? doi: 10.1007/978-3-030-13905-6 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Justice for nature remains a confused term. In recent decades justice has predominantly been limited to humanity, with a strong focus on social justice, and its spin-off – environmental justice for people. We first examine the formal rationale for ecocentrism and ecological ethics, as this underpins attitudes towards justice for nature, and show how justice for nature has been affected by concerns about dualisms and by strong anthro-pocentric bias. We next consider the traditional meaning of social justice, alongside the recent move by some scholars to push justice for nature into social justice, effectively weakening any move to place ecojustice centre-stage. This, we argue, is both unethical and doomed to failure as a strategy to protect life on Earth. The dominant meaning of ‘environmental justice’ – in essence, justice for humans in regard to environmental issues – is also explored. We next discuss what ecological justice (ecojustice) is, and how academia has ignored it for many decades. The charge of ecojustice being ‘antihuman’ is refuted. We argue that distributive justice can also apply to nature, including an ethic of bio-proportionality, and also consider how to reconcile social justice and eco-justice, arguing that ecojustice must now be foregrounded to ensure effective conservation. After suggesting a ‘Framework for implementing ecojustice’ for conservation practitioners, we conclude by urging academia to foreground ecojustice. https://doi.org/10.1016/j.biocon.2018.09.011 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Like most ocean regions today, the European and contiguous seas experience cumulative impacts from local human activities and global pressures. They are largely in poor environmental condition with deteriorating trends. Despite several success stories, European policies for marine conservation fall short of being effective. Acknowledging the challenges for marine conservation, a 4-year multi-national network, MarCons, supported collaborative marine conservation efforts to bridge the gap between science, management and policy, aiming to contribute in reversing present negative trends. By consolidating a large network of more than 100 scientists from 26 countries, and conducting a series of workshops over 4 years (2016–2020), MarCons analyzed challenges, opportunities and obstacles for advancing marine conservation in the European and contiguous seas. Here, we synthesize the major issues that emerged from this analysis and make 12 key recommendations for policy makers, marine managers, and researchers. To increase the effectiveness of marine conservation planning, we recommend (1) designing coherent networks of marine protected areas (MPAs) in the framework of marine spatial planning (MSP) and applying systematic conservation planning principles, including re-evaluation of existing management zones, (2) designing MPA networks within a broader transboundary planning framework, and (3) implementing integrated land-freshwater-sea approaches. To address inadequate or poorly informed management, we recommend (4) developing and implementing adaptive management plans in all sites of the Natura 2000 European conservation network and revising the Natura 2000 framework, (5) embedding and implementing cumulative effects assessments into a risk management process and making them operational, and (6) promoting actions to reach ‘good environmental status’ in all European waters. To account for global change in conservation planning and management, we further recommend (7) developing conservation strategies to address the impacts of global change, for example identifying climate-change refugia as high priority conservation areas, and (8) incorporating biological invasions in conservation plans and prioritizing management actions to control invasive species. Finally, to improve current practices that may compromise the effectiveness of conservation actions, we recommend (9) reinforcing the collection of high-quality open-access data, (10) improving mechanisms for public participation in MPA planning and management, (11) prioritizing conservation goals in full collaboration with stakeholders, and (12) addressing gender inequality in marine sciences and conservation.
MULTIFILE
Digitalisation has enabled businesses to access and utilise vast amounts of data. Business data analytics allows companies to employ the most recent and relevant data to comprehend situations and enhance decision-making. While the value of data itself is limited, substantial value can be directly or indirectly uncovered from data. This process is referred to as data monetisation. The most successful stories of data monetisation often originate from large corporations, as they have adequate resources to monetise their data. Notably, many such cases arise from prominent Big Tech companies in North America. In contrast, small and medium-sized enterprises (SMEs) have lagged behind in utilising their digital data assets effectively. They are frequently constrained by limited resources to build up capabilities and fully exploit their data. This places them at a strategic disadvantage, particularly as digitalisation is progressively reshaping markets and competitive relationships. Furthermore, the use of digital technologies and data are important in addressing societal challenges such as energy conservation, circularity, and the ageing of the population. This lag has been highlighted by SMEs we have engaged with, where managing directors have indicated their desire to operate based on data, but their companies lack the know-how and are unsure of ‘where to start’. Together with eight SMEs and other partners, we have defined a research project to gain insight into the potential and obstacles of data monetisation in SMEs. More specifically, we will explore how SMEs can transform data into strategic assets and create value. We attempt to demonstrate the journey of data monetisation and illustrate different possibilities to create value from data in SMEs. We will take a holistic approach to examine different aspects of data monetisation and their associations. The outcomes of this project are both practical and academic, such as an SME handbook, academic papers, and case studies.
A major challenge for the Netherlands is its transition to a sustainable society: no more natural gas from Groningen to prevent earthquakes, markedly reduced emissions of the greenhouse gas carbon dioxide to stop and invert climate change, on top of growth of electricity in society. Green gas, i.e. biogas suitable for the Dutch gas grid, is supposed to play a major role in the future energy transition, provided sufficient green gas is produced. This challenge has been identified as urgent by professional, academic and private parties and has shaped this project. In view of the anticipated pressure on biomass (availability, alternative uses), the green gas yield from difficult-to-convert biomass by anaerobic digestion should be improved. As typically abundant and difficult-to-convert biomass, grass from road verges and nature conservation areas has been selected. Better conversion of grass will be established with the innovative use of new consortia of (rumen) micro-organisms that are adapted or adaptable to grass degradation. Three-fold yield increase is expected. This is combined with innovative inclusion of oxygen in the digestion process. Next green hydrogen is used to convert carbon dioxide from digestion and maximize gas yield. Appropriate bioreactors increasing the overall methane production rate will be designed and evaluated. In addition, new business models for the two biogas technologies are actively developed. This all will contribute to the development of an appropriate infrastructure for a key topic in Groningen research and education. The research will help developing an appropriate research culture integrated with at least five different curricula at BSc and MSc level, involving six professors and one PhD student. The consortium combines three knowledge institutes, one large company, three SMEs active in biogas areas and one public body. All commit to more efficient conversion of difficult-to-convert biomass in the solid body of applied research proposed here.