Positive Energy Districts (PEDs) are a promising approach to urban energy transformation, aiming to optimize local energy systems and deliver environmental, social and economic benefits. However, their effectiveness and justification for investment rely on understanding the additional value they provide (additionality) in comparison to current policies and planning methods. The additionality perspective is not used yet in current evaluations of PED demonstrations and pilots. Therefore, this paper introduces the concept of additionality in the evaluation of PEDs, focusing on the additional benefits they bring and the circumstances under which they are most effective. We discuss the additionality of PEDs in addressing the challenges of climate neutrality and energy system transformation in three European cities that are funded by the European Commission’s H2020 Programme. It should be noted that given the ongoing status of these projects, the assessment is mainly based on preliminary results, as monitoring is still ongoing and quantitative results are not yet available. The paper discusses the drivers and barriers specific to PEDs, and highlights the challenges posed by technical complexities, financing aspects and social and legal restrictions. Conclusions are drawn regarding the concept of additionality and its implications for the wider development of PEDs as a response to the challenges of climate neutrality and energy system transformation in cities. We conclude that the additionality perspective provides valuable insights into the impact and potential of PEDs for societal goals and recommend this approach for use in the final evaluation of R&I projects involving PEDs using actual monitored data on PEDs.
Measurement methodologies are increasingly being deployed to monitor energy poverty or energy access, and to provide insights for policy development, both in the South and more recently also in the North. However, care should be taken with interpretation and use of the data, particularly if a gender perspective is lacking. This paper argues that taking a gender perspective is vital to understanding energy access and outcomes related to interventions, through consideration of gendered user differences in energy needs, access to energy services and gendered outcome pathways. We show that the standard practice of focusing on numbers of energy connections, availability and quality of supply, is insufficient to provide insights relevant to realising gender equal access and benefits. It is a political decision about what is measured and who decides on what is measured. Based on the literature, we discuss key elements of the use of gender approaches in the assessment of energy access and energy poverty. We show that by including gender approaches in the design and execution of qualitative and quantitative data collection and analysis, there is the potential to contribute to more equitable outcomes from improved energy access.
MULTIFILE
The goal of a local energy community (LEC) is to create a more sustainable, resilient, and efficient energy system by reducing dependence on centralized power sources and enabling greater participation and control by local communities and individuals. LEC requires transformations in local energy systems, and strongly depends on the preferences and actions of the local actors involved. The necessity for extensive stakeholder involvement adds complexity to the energy transition, posing a significant challenge for all involved parties. The municipality of Leidschendam-Voorburg has committed to the national decision for energy transition. It has taken a strategic approach by proceeding De Heuvel/Amstelwijk as the pioneer in this initiative, leading the way for other neighborhoods to follow. It is crucial to devise strategies that effectively facilitate stakeholder engagement. To this end, a thorough stakeholder analysis is needed. Such an analysis can focus on the identification of key stakeholders, their interests, their influence, and their behavioral characteristics in relation to the energy transition. Additionally, it's crucial to uncover the challenges encountered by these stakeholders and finally develop appropriate strategies to address them hence enhance their engagement. This thesis begins with an introduction to the research background, including a presentation of the case study and a statement of the problem identified in the field, followed by the research questions underpinning the study. A thorough literature review ensues, providing a robust synthesis of existing research relating to stakeholder engagement in LECs, with a view to expediting energy transitions. The literature review not only forms the foundation for the research methods adopted in this study but also promotes in the construction of the conceptual model. Subsequent to the literature review, the research method is detailed. The filed research is conducted in five steps: Step 1 - identification of stakeholders, Step 2 - prioritization of stakeholders, Step 3 - interviewing, Step 4 - data analysis, including stakeholder profiling with mapping and addressing challenges, and finally, Step 5 - proposal of strategies for stakeholder engagement enhancement based on the expected and current levels of stakeholders engagement. This research collects necessary information to understand the profiles of stakeholders in De Heuvel/Amstelwijk, tackle challenges faced by different stakeholders, propose strategies to increase stakeholders engagement. It not only aims to enrich the depth of theoretical knowledge on the subject matter but also strives to aid in the development of a localized energy strategy that is optimally suited for the De Heuvel/Amstelwijk neighborhood as good example for other neighborhoods.
To reach the European Green Deal by 2050, the target for the road transport sector is set at 30% less CO2 emissions by 2030. Given the fact that heavy-duty commercial vehicles throughout Europe are driven nowadays almost exclusively on fossil fuels it is obvious that transition towards reduced emission targets needs to happen seamlessly by hybridization of the existing fleet, with a continuously increasing share of Zero Emission vehicle units. At present, trailing units such as semitrailers do not possess any form of powertrain, being a missed opportunity. By introduction of electrically driven axles into these units the fuel consumption as well as amount of emissions may be reduced substantially while part of the propulsion forces is being supplied on emission-free basis. Furthermore, the electrification of trailing units enables partial recuperation of kinetic energy while braking. Nevertheless, a number of challenges still exist preventing swift integration of these vehicles to daily operation. One of the dominating ones is the intelligent control of the e-axle so it delivers right amount of propulsion/braking power at the right time without receiving detailed information from the towing vehicle (such as e.g. driver control, engine speed, engine torque, or brake pressure, …etc.). This is required mainly to ensure interoperability of e-Trailers in the fleets, which is a must in the logistics nowadays. Therefore the main mission of CHANGE is to generate a chain of knowledge in developing and implementing data driven AI-based applications enabling SMEs of the Dutch trailer industry to contribute to seamless energetic transition towards zero emission road freight transport. In specific, CHANGE will employ e-Trailers (trailers with electrically driven axle(s) enabling energy recuperation) connected to conventional hauling units as well as trailers for high volume and extreme payload as focal platforms (demonstrators) for deployment of these applications.
One of the mission-driven innovation policies of the Netherlands is energy transition which sets, among others, the challenge for a carbon-neutral built environment in 2050. Around 41% of Dutch houses do not yet have a registered energy label, and approximately 31% of the registered houses have label C or lower. This calls for action within the housing renovation industry. Bound to the 70 percent rule, a renovation plan requires full (or at least 70 percent) agreement on the renovation between relevant parties, including residents. In practice, agreement indicators focus mostly on economic and energy aspects. When indicators include people’s needs and preferences, it is expected to speed participation and agreement, increasing residents’ satisfaction and enhances the trust in public institutions. Tsavo was founded in 2015 to organise the sustainability of buildings for ambitious clients. Its sustainability process aims to accelerate renovation by keeping at their core value the social needs and preferences of residents. In this project Tsavo and TU Delft work together to optimise the sustainability process so, it includes everyone’s input and results in a sustainability plan that represents everyone. Tsavo’s role will be key in keeping the balance between both a sustainable renovation service that is cheaper and fast yet also attractive and with an impact on the quality of living. In this project, Tsavo’s sustainable renovation projects will be used to implement methods that focus on increasing participation and residents’ satisfaction. TU Delft will explore principles of attractive, accessible and representative activities to stimulate residents to decide on a renovation plan that is essential and meaningful to all.
Horticulture crops and plants use only a limited part of the solar spectrum for their growth, the photosynthetically active radiation (PAR); even within PAR, different spectral regions have different functionality for plant growth, and so different light spectra are used to influence different properties of the plant, such as leaves, fruiting, longer stems and other plant properties. Artificial lighting, typically with LEDs, has been used to provide these specified spectra per plant, defined by their light recipe. This light is called steering light. While the natural sunlight provides a much more sustainable and abundant form of energy, however, the solar spectrum is not tuned towards specific plant needs. In this project, we capitalize on recent breakthroughs in nanoscience to optimally shape the solar spectrum, and produce a spectrally selective steering light, i.e. convert the energy of the entire solar spectrum into a spectrum most useful for agriculture and plant growth to utilize the sustainable solar energy to its fullest, and save on artificial lighting and electricity. We will take advantage of the developed light recipes and create a sustainable alternative to LED steering light, using nanomaterials to optimally shape the natural sunlight spectrum, while maintaining the increased yields. As a proof of concept, we are targeting the compactness of ornamental plants and seek to steer the plants’ growth to reduce leaf extension and thus be more valuable. To realize this project the Peter Schall group at the UvA leads this effort together with the university spinout, SolarFoil, whose expertise lies in the development of spectral conversion layers for horticulture. Renolit - a plastic manufacturer and Chemtrix, expert in flow synthesis, provide expertise and technical support to scale the foil, while Ludvig-Svensson, a pioneer in greenhouse climate screens, provides the desired light specifications and tests the foil in a controlled setting.