BackgroundCritically ill patients are subject to severe skeletal muscle wasting during intensive care unit (ICU) stay, resulting in impaired short- and long-term functional outcomes and health-related quality of life. Increased protein provision may improve functional outcomes in ICU patients by attenuating skeletal muscle breakdown. Supporting evidence is limited however and results in great variety in recommended protein targets.MethodsThe PRECISe trial is an investigator-initiated, bi-national, multi-center, quadruple-blinded randomized controlled trial with a parallel group design. In 935 patients, we will compare provision of isocaloric enteral nutrition with either a standard or high protein content, providing 1.3 or 2.0 g of protein/kg/day, respectively, when fed on target. All unplanned ICU admissions with initiation of invasive mechanical ventilation within 24 h of admission and an expected stay on ventilator support of at least 3 days are eligible. The study is designed to assess the effect of the intervention on functional recovery at 1, 3, and 6 months following ICU admission, including health-related quality of life, measures of muscle strength, physical function, and mental health. The primary endpoint of the trial is health-related quality of life as measured by the Euro-QoL-5D-5-level questionnaire Health Utility Score. Overall between-group differences will be assessed over the three time points using linear mixed-effects models.DiscussionThe PRECISe trial will evaluate the effect of protein on functional recovery including both patient-centered and muscle-related outcomes.Trial registrationClinicalTrials.gov Identifier: NCT04633421. Registered on November 18, 2020. First patient in (FPI) on November 19, 2020. Expected last patient last visit (LPLV) in October 2023.
MULTIFILE
Background: Parents influence their children’s nutrition behavior. The relationship between parental influences and children’s nutrition behavior is often studied with a focus on the dyadic interaction between the parent and the child. However, parents and children are part of a broader system: the family. We investigated the relationship between the family nutrition climate (FNC), a family-level concept, and children’s nutrition behavior. Methods: Parents of primary school-aged children (N = 229) filled in the validated family nutrition climate (FNC) scale. This scale measures the families’ view on the consumption of healthy nutrition, consisting of four dierent concepts: value, communication, cohesion, and consensus. Parents also reported their children’s nutrition behavior (i.e., fruit, vegetable, water, candy, savory snack, and soda consumption). Multivariate linear regression analyses, correcting for potential confounders, were used to assess the relationship between the FNC scale (FNC-Total; model 1) and the dierent FNC subscales (model 2) and the child’s nutrition behavior. Results: FNC-Total was positively related to fruit and vegetable intake and negatively related to soda consumption. FNC-value was a significant predictor of vegetable (positive) and candy intake (negative), and FNC-communication was a significant predictor of soda consumption (negative). FNC-communication, FNC-cohesion, and FNC-consensus were significant predictors (positive, positive, and negative, respectively) of water consumption. Conclusions: The FNC is related to children’s nutrition behavior and especially to the consumption of healthy nutrition. These results imply the importance of taking the family-level influence into account when studying the influence of parents on children’s nutrition behavior. Trial registration: Dutch Trial Register NTR6716 (registration date 27 June 2017, retrospectively registered), METC163027, NL58554.068.16, Fonds NutsOhra project number 101.253.
DOCUMENT
Emerging evidence suggests that exogenous protein/amino acid supplementation has the potential to improve the recovery of critically ill patients. After a careful review of the published evidence, experts have concluded that critically ill patients should receive up to 2.0-2.5 g/kg/d of protein. Despite this, however, recent review of current International Nutrition Survey data suggests that protein in critically ill patients is underprescribed and grossly underdelivered. Furthermore, the survey suggests that most of protein administration comes from enteral nutrition (EN) despite the availability of products and protocols that enhance the delivery of protein/amino acids in the intensive care unit (ICU) setting. While future research clarifies the dose, timing, and composition for exogenous protein administration, as well as identification of patients who will benefit the most, ongoing process improvement initiatives should target a concerted effort to increase protein intake in the critically ill. This assertion follows from the notion that current patients are possibly being harmed while we wait for confirmatory evidence. Further research should also develop better tools to enable bedside practitioners to monitor optimal or adequate protein intake for individual patients. Finally, exploring the effect of combining adequate protein delivery with early mobility and/or resistance exercise in the ICU setting has the greatest potential for improving the functional outcomes of survivors of critical illness and warrants further study.
DOCUMENT
PURPOSE: The objectives of this review are to summarize the current practices and major recent advances in critical care nutrition and metabolism, review common beliefs that have been contradicted by recent trials, highlight key remaining areas of uncertainty, and suggest recommendations for the top 10 studies/trials to be done in the next 10 years.METHODS: Recent literature was reviewed and developments and knowledge gaps were summarized. The panel identified candidate topics for future trials in critical care nutrition and metabolism. Then, members of the panel rated each one of the topics using a grading system (0-4). Potential studies were ranked on the basis of average score.RESULTS: Recent randomized controlled trials (RCTs) have challenged several concepts, including the notion that energy expenditure must be met universally in all critically ill patients during the acute phase of critical illness, the routine monitoring of gastric residual volume, and the value of immune-modulating nutrition. The optimal protein dose combined with standardized active and passive mobilization during the acute phase and post-acute phase of critical illness were the top ranked studies for the next 10 years. Nutritional assessment, nutritional strategies in critically obese patients, and the effects of continuous versus intermittent enteral nutrition were also among the highest-ranking studies.CONCLUSIONS: Priorities for clinical research in the field of nutritional management of critically ill patients were suggested, with the prospect that different nutritional interventions targeted to the appropriate patient population will be examined for their effect on facilitating recovery and improving survival in adequately powered and properly designed studies, probably in conjunction with physical activity.
DOCUMENT
Malnutrition is a serious and widespread health problem in community-dwelling older adults who receive care in hospital and at home. Hospital and home care nurses and nursing assistants have a key role in the delivery of high-quality multidisciplinary nutritional care. Nursing nutritional care in current practice, however, is still suboptimal, which impacts its quality and continuity. There appear to be at least two reasons for this. First, there is a lack of evidence for nutritional care interventions to be carried out by nurses. Second, there are several factors, that influence nurses’ and nursing assistants’ current behaviour, such as lack of knowledge, moderate awareness of the importance and neutral attitudes. This results in a lack of attention towards nutritional care. Therefore, there is a need to generate more evidence and to focus on targeting the factors that influence nurses’ and nursing assistants’ current behaviour to eventually promote behaviour change. To increase the likelihood of successfully changing their behaviour, an evidence-based educational intervention is appropriate. This might lead to enhancing nutritional care and positively impact nutritional status, health and well-being of community-dwelling older adults. The general objectives of this thesis are: 1) To understand the current state of evidence regarding nutrition-related interventions and factors that influence current behaviour in nutritional care for older adults provided by hospital and home care nurses and nursing assistants to prevent and treat malnutrition. 2) To develop an educational intervention for hospital and home care nurses and nursing assistants to promote behaviour change by affecting factors that influence current behaviour in nutritional care for older adults and to describe the intervention development and feasibility.
DOCUMENT
Introduction:The recently published 2018 ESPEN Guidelines on Clinical Nutrition in the Intensive Care Unit [1] represents a valuable revision of the 2006 Enteral Nutrition Guidelines [2] and the 2009 Parenteral Nutrition Guidelines [3] published earlier by this European group. The guidelines committee members have done an excellent job in putting thismanuscript together, providing directives that are clear, concise, brief, and most importantly, transparent. They included only studies published since 2000 for use in their meta-analyses, commenting that this time of transition heralded a new era in the literature involving higher quality randomized control trials (RCTs) and methodologic innovations such as trial registry. Not mentioned (but felt by many within the nutrition community) was the sense that this particular time was a tipping point, following the publication of Van den Berghe’s seminal paper on intensive insulin therapy [4]. Studies published in nutrition prior to this date were felt to reflect an older more antiquated style of management that was less effective. These authors utilized the persistent inflammation catabolism syndrome (PICS) system where four parameters (the patient, intervention, controls, and outcomes) are clearly described, which in turn direct the questions that the guideline committee members were to address. Quality of evidence was assessed by GRADE methodology, and a cut-off date of August 2017 for data entry from the literature was clearly identified. Not all of the recommendations were based on RCTs. The authors are to be commended in that they provided recommendations based on Level 4 low-quality evidence, in areas where RCTs were not available, clearly taking advantage of the group of experts on the committee to provide practical guidance for clinicians where there was a paucity of literature to support evidence-based practices.
DOCUMENT
Under- and overfeeding in Intensive Care Units (ICUs) are linked to prolonged hospitalisation, increased morbidity, and elevated mortality. This study investigates whether ICU patients were optimally nourished according to the European Society for Clinical Nutrition and Metabolism (ESPEN) guidelines. Methods: A cohort of 158 COVID-19 patients requiring intensive care for severe respiratory failure, necessitating a nuanced approach to nutritional support, was analysed. Nutritional status was determined regarding kilocalories and protein using the Energy Expenditure derived from ventilator-measured VCO2 and the adjusted Weir equation, and data on intake through enteral feeding was used. The study included ventilated patients hospitalised for over five days without Extra Corporeal Life Support (ECLS) and receiving enteral nutrition. Associations between mortality and (i) calorie intake and (ii) protein intake were examined using Chi-Square statistics. Results: Conforming to the ESPEN guidelines, 45% of patients were malnourished, and 21% were over-nourished in kilocalories. Additionally, 61% were malnourished, and 16% were over-nourished in protein. The distribution between the groups of survivors and deceased relative to each of the groups well nourished, malnourished, and over-nourished was not statistically different (p = 0.21). The protein distribution among survivors and deceased groups was not statistically different (p = 0.67) regarding correct, insufficient, or excessive protein intake. Conclusions: Based on ESPEN guidelines, most ICU patients were inadequately nourished in kilocalories and protein. However, no significant survival differences were observed across groups with varying nutritional adequacy. Further research is recommended to explore the implications of nutritional interventions in critically ill patients.
DOCUMENT
The Challenge Me intervention aimed to indirectly involve parents in a school-based intervention, by challenging primary school children to perform physical activity (PA) and nutrition-related activities with their parents. The aim of this study is to gain insight in whether this was a feasible strategy to engage children and parents, especially those of vulnerable populations. An exploratory cross-sectional study design was applied. Four primary schools implemented the intervention. Data consisted of challenges completed (intervention posters) and child and family characteristics (questionnaires and anthropometric measurements). Associations between challenges performed and child and family characteristics were assessed using linear regression analysis. Of the 226 study participants, 100% performed at least one challenge, and 93% performed at least one challenge involving parents. Children who performed more PA challenges were often younger, a sports club member, lived in higher socioeconomic status neighbourhoods, of Western ethnicity and from larger families. Regarding nutrition challenges involving parents, younger children performed more challenges. There was no difference in intervention engagement regarding gender, weight status, PA preference, healthy nutrition preference, or the Family PA and Family Nutrition Climate. Challenge Me has potential in involving parents in a school-based intervention. However, certain characteristics were associated with higher involvement
DOCUMENT
Background & aims: High protein delivery during early critical illness is associated with lower mortality, while energy overfeeding is associated with higher mortality. Protein-to-energy ratios of traditional enteral formulae are sometimes too low to reach protein targets without energy overfeeding. This prospective feasibility study aimed to evaluate the ability of a new enteral formula with a high protein-to-energy ratio to achieve the desired protein target while avoiding energy overfeeding.Methods: Mechanically ventilated non-septic patients received the high protein-to-energy ratio nutrition during the first 4 days of ICU stay (n = 20). Nutritional prescription was 90% of measured energy expenditure. Primary endpoint was the percentage of patients reaching a protein target of ≥1.2 g/kg ideal body weight on day 4. Other endpoints included a comparison of nutritional intake to matched historic controls and the response of plasma amino acid concentrations. Safety endpoints were gastro-intestinal tolerance and plasma urea concentrations. Results: Nineteen (95%) patients reached the protein intake target of ≥1.2 g/kg ideal body weight on day 4, compared to 65% in historic controls (p = 0.024). Mean plasma concentrations of all essential amino acids increased significantly from baseline to day 4. Predefined gastro-intestinal tolerance was good, but unexplained foul smelling diarrhoea occurred in two patients. In one patient plasma urea increased unrelated to acute kidney injury. Conclusions: In selected non-septic patients tolerating enteral nutrition, recommended protein targets can be achieved without energy overfeeding using a new high protein-to-energy ratio enteral nutrition.
MULTIFILE
Insight into protein requirements of intensive care unit (ICU) patients is urgently needed, but at present, it is unrealistic to define protein requirements for different diagnostic groups of critical illness or at different stages of illness. No large randomized controlled trials have randomized protein delivery, adequately addressed energy intake, and evaluated relevant clinical outcomes. As a pragmatic approach, experimental studies have focused on protein requirements of heterogeneous ICU patients. Data are scarce and the absolute value of protein requirements therefore is an approximation. Experimental studies indicate a protein requirement of >1.2 g/kg protein, which is supported by several outcome-based observational studies. Protein intake levels of up to 2.0-2.5 g/kg appear to be safe. A higher level of personalized treatment, within 1.2 and 2.5 g/kg, must involve identification of patients with low muscle protein mass that might benefit most from adequate protein nutrition in the ICU.
DOCUMENT