Standard SARS-CoV-2 testing protocols using nasopharyngeal/throat (NP/T) swabs are invasive and require trained medical staff for reliable sampling. In addition, it has been shown that PCR is more sensitive as compared to antigen-based tests. Here we describe the analytical and clinical evaluation of our in-house RNA extraction-free saliva-based molecular assay for the detection of SARS-CoV-2. Analytical sensitivity of the test was equal to the sensitivity obtained in other Dutch diagnostic laboratories that process NP/T swabs. In this study, 955 individuals participated and provided NP/T swabs for routine molecular analysis (with RNA extraction) and saliva for comparison. Our RT-qPCR resulted in a sensitivity of 82,86% and a specificity of 98,94% compared to the gold standard. A false-negative ratio of 1,9% was found. The SARS-CoV-2 detection workflow described here enables easy, economical, and reliable saliva processing, useful for repeated testing of individuals.
LINK
Aim: To evaluate healthcare professionals' performance and treatment fidelity in the Cardiac Care Bridge (CCB) nurse-coordinated transitional care intervention in older cardiac patients to understand and interpret the study results. Design: A mixed-methods process evaluation based on the Medical Research Council Process Evaluation framework. Methods: Quantitative data on intervention key elements were collected from 153 logbooks of all intervention patients. Qualitative data were collected using semi-structured interviews with 19 CCB professionals (cardiac nurses, community nurses and primary care physical therapists), from June 2017 until October 2018. Qualitative data-analysis is based on thematic analysis and integrated with quantitative key element outcomes. The analysis was blinded to trial outcomes. Fidelity was defined as the level of intervention adherence. Results: The overall intervention fidelity was 67%, ranging from severely low fidelity in the consultation of in-hospital geriatric teams (17%) to maximum fidelity in the comprehensive geriatric assessment (100%). Main themes of influence in the intervention performance that emerged from the interviews are interdisciplinary collaboration, organizational preconditions, confidence in the programme, time management and patient characteristics. In addition to practical issues, the patient's frailty status and limited motivation were barriers to the intervention. Conclusion: Although involved healthcare professionals expressed their confidence in the intervention, the fidelity rate was suboptimal. This could have influenced the non-significant effect of the CCB intervention on the primary composite outcome of readmission and mortality 6 months after randomization. Feasibility of intervention key elements should be reconsidered in relation to experienced barriers and the population. Impact: In addition to insight in effectiveness, insight in intervention fidelity and performance is necessary to understand the mechanism of impact. This study demonstrates that the suboptimal fidelity was subject to a complex interplay of organizational, professionals' and patients' issues. The results support intervention redesign and inform future development of transitional care interventions in older cardiac patients.
Living labs are complex multi-stakeholder collaborations that often employ a usercentred and design-driven methodology to foster innovation. Conventional management tools fall short in evaluating them. However, some methods and tools dedicated to living labs' special characteristics and goals have already been developed. Most of them are still in their testing phase. Those tools are not easily accessible and can only be found in extensive research reports, which are difficult to dissect. Therefore, this paper reviews seven evaluation methods and tools specially developed for living labs. Each section of this paper is structured in the following manner: tool’s introduction (1), who uses the tool (2), and how it should be used (3). While the first set of tools, namely “ENoLL 20 Indicators”, “SISCODE Self-assessment”, and “SCIROCCO Exchange Tool” assess a living lab as an organisation and are diving deeper into the organisational activities and the complex context, the second set of methods and tools, “FormIT” and “Living Lab Markers”, evaluate living labs’ methodologies: the process they use to come to innovations. The paper's final section presents “CheRRIes Monitoring and Evaluation Tool” and “TALIA Indicator for Benchmarking Service for Regions”, which assess the regional impact made by living labs. As every living lab is different regarding its maturity (as an organisation and in its methodology) and the scope of impact it wants to make, the most crucial decision when evaluating is to determine the focus of the assessment. This overview allows for a first orientation on worked-out methods and on possible indicators to use. It also concludes that the existing tools are quite managerial in their method and aesthetics and calls for designers and social scientists to develop more playful, engaging and (possibly) learning-oriented tools to evaluate living labs in the future. LinkedIn: https://www.linkedin.com/in/overdiek12345/ https://www.linkedin.com/in/mari-genova-17a727196/?originalSubdomain=nl
Smart city technologies, including artificial intelligence and computer vision, promise to bring a higher quality of life and more efficiently managed cities. However, developers, designers, and professionals working in urban management have started to realize that implementing these technologies poses numerous ethical challenges. Policy papers now call for human and public values in tech development, ethics guidelines for trustworthy A.I., and cities for digital rights. In a democratic society, these technologies should be understandable for citizens (transparency) and open for scrutiny and critique (accountability). When implementing such public values in smart city technologies, professionals face numerous knowledge gaps. Public administrators find it difficult to translate abstract values like transparency into concrete specifications to design new services. In the private sector, developers and designers still lack a ‘design vocabulary’ and exemplary projects that can inspire them to respond to transparency and accountability demands. Finally, both the public and private sectors see a need to include the public in the development of smart city technologies but haven’t found the right methods. This proposal aims to help these professionals to develop an integrated, value-based and multi-stakeholder design approach for the ethical implementation of smart city technologies. It does so by setting up a research-through-design trajectory to develop a prototype for an ethical ‘scan car’, as a concrete and urgent example for the deployment of computer vision and algorithmic governance in public space. Three (practical) knowledge gaps will be addressed. With civil servants at municipalities, we will create methods enabling them to translate public values such as transparency into concrete specifications and evaluation criteria. With designers, we will explore methods and patterns to answer these value-based requirements. Finally, we will further develop methods to engage civil society in this processes.
The research results, the identified success factors for the Innovation Lab HIBO, will make it clear what is needed for the Innovation Lab HIBO in order to succeed: (a) with regard to design and further development of the Innovation Lab HIBO, as well as (b) with regard to conditions that need to be created and prerequisites that need to be followed for the successful functioning of the Innovation Lab HIBO. From September 2020 the follow up research is planned into operationalization of success factors, definition of performance criteria, performance evaluation, development of suggestions for improvement of performance, and development of a blueprint. In fulfilment of interinstitutional agreements on educational quality, specifically, the Agreement on Quality 2.6 [Kwaliteitsafspraak 2.6: “het faciliteren van docenten om te onderzoeken wat de succesfactoren zijn van leergemeenschappen en hun onderwijspraktijk, inclusief het leren van docent-onderzoekers”], the sub-theme No.7 “Valorisatie van de effecten van IWP’s. Succesfactoren IWP's”, the research on success factors for the Innovation Lab Hanze International Business Office (HIBO) will be carried on in the period from February 1, 2020, till August 30, 2020.