Event-related potentials (ERPs) have been used for decades to study perception, cognition, emotion, neurological and psychiatric disorders, and lifespan development. ERPs consist of multiple components and reflect a specific neurocognitive process. In the past, there was no single source that could be consulted to learn about all the major ERP components; learning about a single ERP component required reading dozens or even hundreds of separate journal articles and book chapters. The Oxford Handbook of Event-Related Potential Components fills this void with a detailed review of the major ERP components. The book looks at the fundamental nature of ERP components, including essential information about how ERP components are defined and isolated. It explains in detail individual components, such as the N170, P300, and ERN. It further examines groups of related components within specific research domains, such as language, emotion, and memory. Finally, it analyses ERP components in special populations, including children, the elderly, nonhuman primates, and patients with neurological disorders, affective disorders, and schizophrenia.
LINK
This study examines the automaticity of processing the emotional aspects of words, and characterizes the oscillatory brain dynamics that accompany this automatic processing. Participants read emotionally negative, neutral and positive nouns while performing a color detection task in which only perceptual-level analysis was required. Event-related potentials and time frequency representations were computed from the concurrently measured EEG. Negative words elicited a larger P2 and a larger late positivity than positive and neutral words, indicating deeper semantic/evaluative processing of negative words. In addition, sustained alpha power suppressions were found for the emotional compared to neutral words, in the time range from 500 to 1000. ms post-stimulus. These results suggest that sustained attention was allocated to the emotional words, whereas the attention allocated to the neutral words was released after an initial analysis. This seems to hold even when the emotional content of the words is task-irrelevant.
LINK
This paper proposes an amendment of the classification of safety events based on their controllability and contemplates the potential of an event to escalate into higher severity classes. It considers (1) whether the end-user had the opportunity to intervene into the course of an event, (2) the level of end-user familiarity with the situation, and (3) the positive or negative effects of end-user intervention against expected outcomes. To examine its potential, we applied the refined classification to 296 aviation safety investigation reports. The results suggested that pilots controlled only three-quarters of the occurrences, more than three-thirds of the controlled cases regarded fairly unfamiliar situations, and the flight crews succeeded to mitigate the possible negative consequences of events in about 71% of the cases. Further statistical tests showed that the controllability-related characteristics of events had not significantly changed over time, and they varied across regions, aircraft, operational and event characteristics, as well as when fatigue had contributed to the occurrences. Overall, the findings demonstrated the value of using the controllability classification before considering the actual outcomes of events as means to support the identification of system resilience and successes. The classification can also be embedded in voluntary reporting systems to allow end-users to express the degree of each of the controllability characteristics so that management can monitor them over time and perform internal and external benchmarking. The mandatory reports concerned, the classification could function as a decision-making parameter for prioritising incident investigations.