OBJECTIVE: To determine whether aerobic capacity is normal in boys with different types of hemophilia compared with healthy peers and whether the level of aerobic capacity correlates with the amount of physical activity, joint health status, muscle strength, and anthropometrics.STUDY DESIGN: 47 patients (mean [SD] age, 12.9 [3.2] years; age range, 8.2-17.4 years) from the "Van Creveldkliniek" of the University Medical Center Utrecht, participated. Anthropometry, muscle strength, joint impairment, functional ability, and aerobic capacity were measured. The amount of energy expenditure during daily living was assessed.RESULTS: All boys were able to perform at maximal or near-maximal level on exercise tests, and none of them reported bleeds or other adverse events. Relative peak oxygen, peak heart rate, and peak working capacity were significantly lower compared with healthy control subjects. 30% had Z-scores >2 for weight. Total muscle strength was normal, and almost no joint impairment and no decrease in functional ability were found.CONCLUSION: The aerobic capacity of children with hemophilia is still lower than the normal population, whereas their overall muscle strength is comparable with healthy peers. The functional ability does not differ from healthy peers, and joint health status showed very minor impairments. A substantial proportion of Dutch children with hemophilia was overweight, without showing a reduction in the amount of self-reported physical activities.
A loss of physical functioning (i.e., a low physical capacity and/or a low physical activity) is a common feature in patients with chronic obstructive pulmonary disease (COPD). To date, the primary care physiotherapy and specialized pulmonary rehabilitation are clearly underused, and limited to patients with a moderate to very severe degree of airflow limitation (GOLD stage 2 or higher). However, improved referral rates are a necessity to lower the burden for patients with COPD and for society. Therefore, a multidisciplinary group of healthcare professionals and scientists proposes a new model for referral of patients with COPD to the right type of exercise-based care, irrespective of the degree of airflow limitation. Indeed, disease instability (recent hospitalization, yes/no), the burden of disease (no/low, mild/moderate or high), physical capacity (low or preserved) and physical activity (low or preserved) need to be used to allocate patients to one of the six distinct patient profiles. Patients with profile 1 or 2 will not be referred for physiotherapy; patients with profiles 3–5 will be referred for primary care physiotherapy; and patients with profile 6 will be referred for screening for specialized pulmonary rehabilitation. The proposed Dutch model has the intention to get the right patient with COPD allocated to the right type of exercise-based care and at the right moment.
Background/Aims: This study examines the feasibility of a preoperative exercise program to improve the physical fitness of a patient before gastrointestinal surgery. Methods: An outpatient exercise program was developed to increase preoperative aerobic capacity, peripheral muscle endurance and respiratory muscle function in patients with pancreatic, liver, intestinal, gastric or esophageal cancer. During a consult at the outpatient clinic, patients were invited to participate in the exercise program when their surgery was not scheduled within 2 weeks. Results: The 115 participants followed on average 5.7 (3.5) training sessions. Adherence to the exercise program was high: 82% of the planned training sessions were attended, and no adverse events occurred. Mixed model analyses showed a significant increase of maximal inspiratory muscle strength (84.1-104.7 cm H2O; p = 0.00) and inspiratory muscle endurance (35.0-39.5 cm H2O; p = 0.00). No significant changes were found in aerobic capacity and peripheral muscle strength. Conclusion: This exercise program in patients awaiting oncological surgery is feasible in terms of participation and adherence. Inspiratory muscle function improved significantly as a result of inspiratory muscle training. The exercise program however failed to result in improved aerobic capacity and peripheral muscle strength, probably due to the limited number of training sessions as a result of the restricted time interval between screening and surgery.
Low back pain is the leading cause of disability worldwide and a significant contributor to work incapacity. Although effective therapeutic options are scarce, exercises supervised by a physiotherapist have shown to be effective. However, the effects found in research studies tend to be small, likely due to the heterogeneous nature of patients' complaints and movement limitations. Personalized treatment is necessary as a 'one-size-fits-all' approach is not sufficient. High-tech solutions consisting of motions sensors supported by artificial intelligence will facilitate physiotherapists to achieve this goal. To date, physiotherapists use questionnaires and physical examinations, which provide subjective results and therefore limited support for treatment decisions. Objective measurement data obtained by motion sensors can help to determine abnormal movement patterns. This information may be crucial in evaluating the prognosis and designing the physiotherapy treatment plan. The proposed study is a small cohort study (n=30) that involves low back pain patients visiting a physiotherapist and performing simple movement tasks such as walking and repeated forward bending. The movements will be recorded using sensors that estimate orientation from accelerations, angular velocities and magnetometer data. Participants complete questionnaires about their pain and functioning before and after treatment. Artificial analysis techniques will be used to link the sensor and questionnaire data to identify clinically relevant subgroups based on movement patterns, and to determine if there are differences in prognosis between these subgroups that serve as a starting point of personalized treatments. This pilot study aims to investigate the potential benefits of using motion sensors to personalize the treatment of low back pain. It serves as a foundation for future research into the use of motion sensors in the treatment of low back pain and other musculoskeletal or neurological movement disorders.