The in-depth assessment of the situation of the European textile and clothing sector is composed by six independent reports with a close focus on key aspects useful to understand the dynamics and the development of the textile and clothing industry, drivers of change – most notably the impact of the financial crisis – and identification of policy responses and best practices. This has been done in six specific tasks leading to the six reports: Task 1 Survey on the situation of the EU textile and clothing sector Task 2 Report on research and development Task 3 Report on SME situation Task 4 Report on restructuring Task 5 Report on training and Education Task 6 Report on innovation practices The aim of Task 1 was to provide insight into the trends and drivers of change in the Textile and Clothing (T&C hereafter) industry and to provide input to the remaining Tasks.
MULTIFILE
Author supplied: Abstract—The growing importance and impact of new technologies are changing many industries. This effect is especially noticeable in the manufacturing industry. This paper explores a practical implementation of a hybrid architecture for the newest generation of manufacturing systems. The papers starts with a proposition that envisions reconfigurable systems that work together autonomously to create Manufacturing as a Service (MaaS). It introduces a number of problems in this area and shows the requirements for an architecture that can be the main research platform to solve a number of these problems, including the need for safe and flexible system behaviour and the ability to reconfigure with limited interference to other systems within the manufacturing environment. The paper highlights the infrastructure and architecture itself that can support the requirements to solve the mentioned problems in the future. A concept system named Grid Manufacturing is then introduced that shows both the hardware and software systems to handle the challenges. The paper then moves towards the design of the architecture and introduces all systems involved, including the specific hardware platforms that will be controlled by the software platform called REXOS (Reconfigurable EQuipletS Operating System). The design choices are provided that show why it has become a hybrid platform that uses Java Agent Development Framework (JADE) and Robot Operating System (ROS). Finally, to validate REXOS, the performance is measured and discussed, which shows that REXOS can be used as a practical basis for more specific research for robust autonomous reconfigurable systems and application in industry 4.0. This paper shows practical examples of how to successfully combine several technologies that are meant to lead to a faster adoption and a better business case for autonomous and reconfigurable systems in industry.
In this work, in situ measurements of the radio frequency electromagnetic field exposure have been conducted for an indoor massive MIMO 5G base station operating at 26–28 GHz. Measurements were performed at six different positions (at distances between 9.94 and 14.32 m from the base station), of which four were in line-of-sight and two were in non-line-of-sight. A comparison was performed between the measurements conducted with an omnidirectional probe and with a horn antenna, for scenarios with and without a user equipment used to actively create an antenna traffic beam from the base station towards the measurement location. A maximum exposure of 171.9 mW/m2 was measured at a distance of 9.94 m from the base station. This is below 2% of the ICNIRP reference level. Moreover, the feasibility to measure the power per resource element of the Synchronization Signal Block - which can be used to extrapolate the maximum exposure level - with a conventional spectrum analyzer was shown by comparison with a network decoder.
MULTIFILE