The main question in this PhD thesis is: How can Business Rules Management be configured and valued in organizations? A BRM problem space framework is proposed, existing of service systems, as a solution to the BRM problems. In total 94 vendor documents and approximately 32 hours of semi-structured interviews were analyzed. This analysis revealed nine individual service systems, in casu elicitation, design, verification, validation, deployment, execution, monitor, audit, and version. In the second part of this dissertation, BRM is positioned in relation to BPM (Business Process Management) by means of a literature study. An extension study was conducted: a qualitative study on a list of business rules formulated by a consulting organization based on the Committee of Sponsoring Organizations of the Treadway Commission risk framework. (from the summary of the Thesis p. 165)
De horeca-sector en het toerisme worden zwaar getroffen door de huidige crisis. Omzetschade is historisch groot; tegelijkertijd zijn er vanuit de praktijk veel vragen over hoe nieuwe werkwijzen moeten worden ontwikkeld en toegepast. Voor onze sector voorziet onderzoek in het kader van de Impuls-regeling daarom onmiskenbaar in een grote maatschappelijke behoefte. Hotelschool The Hague (HTH) zet strategisch in op het behoud en de versterking van praktijkgericht onderzoek en op het onderzoekend vermogen van haar studenten. Onderzoekend vermogen is, voor toekomstige afstudeerders in een snel veranderende arbeidsmarkt, door de HTH gedefinieerd als cruciale kernvaardigheid. In dit kader zijn recent de onderwijs- en onderzoeksprogramma’s van de HTH hervormd rond de principes van Design Oriented Research. Door de COVID-19 crisis is de continuïteit van het praktijkgericht onderzoek van de HTH, misschien nog wel meer dan bij brede hogescholen onder druk komen te staan. Met het hier voorgestelde Impuls 2020 bestedingsplan wil HTH de onderzoeksfunctie van haar praktische outlets — haar schoolrestaurants en -hotels— verder versterken zodat deze kunnen worden ingericht en gebruikt als ‘test-beds’ of HTH Labs. De schoolrestaurants en -hotels worden hiermee een faciliteit voor experimenteel, praktijkgericht onderzoek waar in commerciële bedrijven vaak geen mogelijkheid voor is. Dit Impuls 2020 voorstel behelst de visievorming voor de HTH Labs en de netwerkvorming met andere kennisinstellingen en met bedrijven als beoogde afnemers van de kennis die in de Labs ontwikkeld zal worden. Het voorstel voorziet tevens in de uitvoering van 3 pilotstudies die de mogelijkheden van de HTH Labs inzichtelijk maken voor het bedrijfsleven. De Impuls financiering zal uiteindelijk resulteren in een operationele onderzoeksfaciliteit in de schoolrestaurants en -hotels van de HTH, en in drie onderzoeksrapporten met bijbehorende disseminatie-activiteiten.
KnowledgeFlows in Marine Spatial Planning - Sharing Innovation in Higher Education(KnowledgeFlows) aims at further enforcing the European higher education community to meet the growing demands for knowledge, skills and innovation within the still emerging field of marine or maritime spatial planning (MSP).Marine Spatial Planning (MSP) is an emerging governmental approach towards a more effective use of the sea. MSP is of great interest in Europe and can be considered a societal process to balance conflicting interests of maritime stakeholders and the marine environment. Many different activities take place at sea, ranging from shipping, fisheries, to offshore wind energy activities. Simultaneously, new and evolving policies focus on strategies to integrate different marine demands in space and resources. MSP is now legally binding in the EU and is much needed approach to manage and organize the use of the sea, while also protecting the environment.KnowledgeFlows will contribute to the development of new innovative approaches to higher education and training on MSP by means of problem-based learning schemes, transdisciplinary collaboration, and advanced e-learning concepts. KnowledgeFlows builds on results from former project outputs (Erasmus+ Strategic Partnership for Marine Spatial Planning SP-MSP), such as the online learning platform MSP Education Arena (https://www.sp-msp.uol.de).The strategic partnership consists of a transnational network of experts both in research and in practice based in the north Atlantic, Baltic Sea and North Sea Regions including Aalborg University (DK, lead partner), The University of Oldenburg (D), the University of Liverpool (U.K.), the University of Nantes (F), the Leibniz Institute for Baltic Sea Research (D), the Breda University of Applied Sciences (NL), University of Ulster (U.K.), and the Finnish Environment Institute (FI). Gothenburg University, also being a higher education organisation, will be associated partner.Furthermore, three international organisations, the Marine Spatial Planning Research Network, the Baltic inter-governmental VASAB and the pan-Nordic Nordregio will be involved in the partnership as associated organisations deeply rooted in the MSP community of practice.The further improvement of curricula, exchange of knowledge and experts, and transparency and recognition of learning outcomes to reach higher qualifications in MSP are key components of KnowledgeFlows. A mutual learning environment for MSP higher education will enable problem-driven innovation among students and their educators from research and governance also involving stakeholders. Related activities on intellectual outputs, multiplier events and lecturing will be carried out by all participating organisations.The intellectual outputs are related to three major contributions to the European higher education landscape:1) an advanced level international topical MSP course (Step-up MSP)2) digital learning facilities and tools (MSP Education Arena)3) designing problem-based learning in MSP (MSP directory)The advanced level inter-institutional topical MSP course will include different teaching and training activities within a problem-based learning environment. Digital learning facilities enabling communication and training will include a further enrichment of the MSP Education Arena platform for students, practitioners and lecturers for including modules forcollaborate learning activities, documentation and dissemination, mobilisation/recruitment, thesis opportunities, placements/internships. Designing problem-based learning in MSP will include topics as; the design of didactics and methods; guidance for lecturers, supervisors and students; evaluation and quality assurance; assessment.Five multiplier events back to back or as part of conferences within the MSP community will be organised to mainstream the outputs and innovative MSP didactics among other universities and institutions.Different teaching and training activities feeds into the intellectual output activities, which will include serious gaming sessions (MSP Challenge (http://www.mspchallenge.info/) and others), workshops, excursions, courses/classes as well as a conference with a specific focus on facilitating the exchange of innovative ideas and approaches among students at bachelor´s, master´s and doctoral level and the MSP community of practice.Project management meetings (twice a year) will assure coherence in project planning and implementation. As the core focus of the strategic partnership is on collaboration, mutual learning, and innovation among educators, students, and practitioners in order to meet actual and future needs regarding knowledge exchange and training within the MSP community, the project will be designed to have long lasting effects.Results
To optimize patient care, it is vital to prevent infections in healthcare facilities. In this respect, the increasing prevalence of antibiotic-resistant bacterial strains threatens public healthcare. Current gold standard techniques are based on classical microbiological assays that are time consuming and need complex expensive lab environments. This limits their use for high throughput bacterial screening to perform optimal hygiene control. The infection prevention workers in hospitals and elderly nursing homes underline the urgency of a point-of-care tool that is able to detect bacterial loads on-site in a fast, precise and reliable manner while remaining with the available budgets. The aim of this proposal titled SURFSCAN is to develop a novel point-of-care tool for bacterial load screening on various surfaces throughout the daily routine of professionals in healthcare facilities. Given the expertise of the consortium partners, the point-of-care tool will be based on a biomimetic sensor combining surface imprinted polymers (SIPs), that act as synthetic bacterial receptors, with a thermal read-out strategy for detection. The functionality and performance of this biomimetic sensor has been shown in lab conditions and published in peer reviewed journals. Within this proposal, key elements will be optimized to translate the proof of principle concept into a complete clinical prototype for on-site application. These elements are essential for final implementation of the device as a screening and assessment tool for scanning bacterial loads on surfaces by hospital professionals. The research project offers a unique collaboration among different end-users (hospitals and SMEs), and knowledge institutions (Zuyd University of Applied Sciences, Fontys University of Applied Sciences and Maastricht Science Programme, IDEE-Maastricht University), which guarantees transfer of fundamental knowledge to the market and end-user needs.