This article researches factors that influence price fairness judgments. The empirical literature suggests several factors: reference prices, the costs of the seller, a self-interest bias, and the perceived motive of sellers. Using a Dutch sample, we find empirical evidence that these factors significantly affect perceptions of fair prices. In addition, we find that the perceived fairness of prices is also influenced by other distributional concerns that are independent of the transaction. In particular, price increases are judged to be fairer if they benefit poor people or small organizations rather than rich people or big organizations.
DOCUMENT
This paper researches perceptions of the concept of price fairness in the Dutch coffee market. We distinguish four alternative standards of fair prices based on egalitarian, basic rights, capitalistic and libertarian approaches. We investigate which standards are guiding the perceptions of price fairness of citizens and coffee trade organizations. We find that there is a divergence in views between citizens and key players in the coffee market. Whereas citizens support the concept of fairness derived from the basic rights approach, holding that the price should provide coffee farmers with a minimum level of subsistence, representatives of Dutch coffee traders hold the capitalistic view that the free world market price is fair.
DOCUMENT
Learning Analytics en bias – Learning analytics richt zich op het meten en analyseren van studentgegevens om onderwijs te verbeteren. Bakker onderscheidt hierin verschillende niveaus, zoals student analytics en institutional analytics, en focust op inclusion analytics, waarin gekeken wordt naar kansengelijkheid. Bias – systematische vooroordelen in data – kan vooroordelen in algoritmen versterken en zo kansenongelijkheid veroorzaken. De onderzoeksmethode maakt gebruik van het 4/5-criterium, waarbij fairness in uitkomsten gemeten wordt door te kijken of de kansen voor de beschermde groep minstens 80% zijn van die van de bevoorrechte groep.Onderzoeksaanpak – Bakker gebruikt machine learning om retentie na het eerste studiejaar te voorspellen en onderzoekt vervolgens verschillen tussen groepen studenten, zoals mbo-en vwo-studenten. Hij volgt drie stappen: (1) Data voorbereiden en modellen bouwen: Data worden opgesplitst en opgeschoond om accurate voorspelmodellen te maken. (2) Variabelen analyseren: Invloed van kenmerken op uitkomsten wordt beoordeeld voor verschillende groepen. (3) Fairness berekenen: Het 4/5-criterium wordt toegepast op metrics zoals accuraatheid en statistische gelijkheid om bias en ongelijkheden te identificeren. Resultaten, aanbevelingen en vervolgonderzoek – Uit het onderzoek blijkt dat kansengelijkheid bij veel opleidingen ontbreekt, met name voor mannen en mbo-studenten, die een hogere kans op uitval hebben. Bakker adviseert sensitieve kenmerken zoals migratieachtergrond mee te nemen in analyses op basis van informed consent. Daarnaast pleit hij voor meer flexibiliteit in het beleid, geïnspireerd door maatregelen tijdens de coronacrisis, die een positief effect hadden op studiesucces.Toekomstvisie – Bakker benadrukt dat niet elke ongelijkheid het gevolg is van discriminatie en roept op tot data-informed interventies om sociale rechtvaardigheid in het onderwijs te bevorderen. Zijn methode wordt open access beschikbaar gesteld, zodat ook andere instellingen deze kunnen toepassen en kansengelijkheid systematisch en bewust kunnen onderzoeken.
DOCUMENT
De 2SHIFT SPRONG-groep is een samenwerkingsverband van HAN University of Applied Sciences en Fontys Hogescholen. Onze ambitie is het vergroten van eerlijke kansen op gezond leven. Dit doen we door het vormgeven en versterken van gemeenschappen als fundament voor het creëren van eerlijke kansen op gezond leven. Vanuit deze gemeenschappen wordt in co-creatie gewerkt aan structuur (i.e. systeem), sociale en technologische innovaties. Deze ambitie sluit aan bij de centrale missie KIA Gezondheid en Zorg om bij te dragen aan goede gezondheid en het verkleinen van sociaaleconomische gezondheidsverschillen. Ook draagt het bij aan deelmissie 1. het voorkomen van ziekte, waarbij wij uitgaan van het concept Positieve Gezondheid en Leefomgeving. Én het zorgt voor het verplaatsen van ondersteuning en zorg naar de leefomgeving (deelmissie 2), doordat gemeenschappen hiervoor een stevig fundament vormen. De gemeenschap is geoperationaliseerd als een samenwerking tussen inwonersinitiatieven (i.e. informele actoren) én professionals vanuit wonen, welzijn, zorg en gemeenten (i.e. formele actoren) die bestuurlijk en beleidsmatig worden ondersteund. Toenemend wordt een belangrijke rol en meer verantwoordelijkheid toebedeeld aan inwoners en wordt de noodzaak van sectoroverstijgende, inclusieve samenwerking tussen deze actoren in lokale fieldlabs benadrukt. 2SHIFT start daarom in vier fieldlabs: twee dorpen en twee wijken in (midden-)stedelijke gebieden, waar in vergelijking met groot-stedelijk gebied (zoals Amsterdam, Rotterdam, Den Haag en Utrecht) andere dynamieken en mechanismen een rol spelen bij het creëren van eerlijke kansen op een gezond leven. Om impact in onderwijs en praktijk te realiseren werken we nauw samen met studenten, docenten én met inwoners, professionals, bestuurders en beleidsmakers uit wonen, welzijn, zorg en gemeenten én landelijke kennispartners (“quadruple helix”). 2SHIFT brengt transdisciplinaire expertise én verschillende onderzoeksparadigma’s samen in een Learning Community (LC), waarin bestaande kennis en nieuwe kennis wordt samengebracht en ontwikkeld. Over 8 jaar is 2SHIFT een (inter)nationaal erkende onderzoeksgroep die het verschil maakt.
Moderatie van lezersreacties onder nieuwsartikelen is erg arbeidsintensief. Met behulp van kunstmatige intelligentie wordt moderatie mogelijk tegen een redelijke prijs. Aangezien elke toepassing van kunstmatige intelligentie eerlijk en transparant moet zijn, is het belangrijk om te onderzoeken hoe media hieraan kunnen voldoen.
Moderatie van lezersreacties onder nieuwsartikelen is erg arbeidsintensief. Met behulp van kunstmatige intelligentie wordt moderatie mogelijk tegen een redelijke prijs. Aangezien elke toepassing van kunstmatige intelligentie eerlijk en transparant moet zijn, is het belangrijk om te onderzoeken hoe media hieraan kunnen voldoen.Doel Dit promotieproject zal zich richten op de rechtvaardigheid, accountability en transparantie van algoritmische systemen voor het modereren van lezersreacties. Het biedt een theoretisch kader en bruikbare matregelen die nieuwsorganisaties zullen ondersteunen in het naleven van recente beleidsvorming voor een waardegedreven implementatie van AI. Nu steeds meer nieuwsmedia AI gaan gebruiken, moeten ze rechtvaardigheid, accountability en transparantie in hun gebruik van algoritmen meenemen in hun werkwijzen. Resultaten Hoewel moderatie met AI zeer aantrekkelijk is vanuit economisch oogpunt, moeten nieuwsmedia weten hoe ze onnauwkeurigheid en bias kunnen verminderen (fairness), de werking van hun AI bekendmaken (accountability) en de gebruikers laten begrijpen hoe beslissingen via AI worden genomen (transparancy). Dit proefschrift bevordert de kennis over deze onderwerpen. Looptijd 01 februari 2022 - 01 februari 2025 Aanpak De centrale onderzoeksvraag van dit promotieonderzoek is: Hoe kunnen en moeten nieuwsmedia rechtvaardigheid, accountability en transparantie in hun gebruik van algoritmes voor commentmoderatie? Om deze vraag te beantwoorden is het onderzoek opgesplitst in vier deelvragen. Hoe gebruiken nieuwsmedia algoritmes voor het modereren van reacties? Wat kunnen nieuwsmedia doen om onnauwkeurigheid en bias bij het modereren via AI van reacties te verminderen? Wat moeten nieuwsmedia bekendmaken over hun gebruik van moderatie via AI? Wat maakt uitleg van moderatie via AI begrijpelijk voor gebruikers van verschillende niveaus van digitale competentie?