Fatigued pilots are prone to experience cognitive disorders that degrade their performance and adherence to high safety standards. In light of the current challenging context in aviation, we report the early phase of our ongoing project on the re-evaluation of human factors research for flight crew. Our motivation stems from the need for aviation organisations to develop decision support systems for operational aviation settings, able to feed-in in the organisations’ fatigue risk management efforts. Key criteria to this end are the need for the least possible intrusiveness and the added information value for a safety system. Departing from the problems in compliance-focused fatigue risk management and the intrusive nature of clinical studies, we report a neuroscientific methodology able to yield markers that can be easily integrated in a decision support system at the operational level. Reporting the preliminary phase of our live project, we evaluate the tools suitable for the development of a system that tracks subtle pilot states, such as drowsiness and micro-sleep episodes.
BackgroundPatients undergoing total knee arthroplasty (TKA) often experience strength deficits both pre- and post-operatively. As these deficits may have a direct impact on functional recovery, strength assessment should be performed in this patient population. For these assessments, reliable measurements should be used. This study aimed to determine the inter- and intrarater reliability of hand-held dynamometry (HHD) in measuring isometric knee strength in patients awaiting TKA.MethodsTo determine interrater reliability, 32 patients (81.3% female) were assessed by two examiners. Patients were assessed consecutively by both examiners on the same individual test dates. To determine intrarater reliability, a subgroup (n = 13) was again assessed by the examiners within four weeks of the initial testing procedure. Maximal isometric knee flexor and extensor strength were tested using a modified Citec hand-held dynamometer. Both the affected and unaffected knee were tested. Reliability was assessed using the Intraclass Correlation Coefficient (ICC). In addition, the Standard Error of Measurement (SEM) and the Smallest Detectable Difference (SDD) were used to determine reliability.ResultsIn both the affected and unaffected knee, the inter- and intrarater reliability were good for knee flexors (ICC range 0.76-0.94) and excellent for knee extensors (ICC range 0.92-0.97). However, measurement error was high, displaying SDD ranges between 21.7% and 36.2% for interrater reliability and between 19.0% and 57.5% for intrarater reliability. Overall, measurement error was higher for the knee flexors than for the knee extensors.ConclusionsModified HHD appears to be a reliable strength measure, producing good to excellent ICC values for both inter- and intrarater reliability in a group of TKA patients. High SEM and SDD values, however, indicate high measurement error for individual measures. This study demonstrates that a modified HHD is appropriate to evaluate knee strength changes in TKA patient groups. However, it also demonstrates that modified HHD is not suitable to measure individual strength changes. The use of modified HHD is, therefore, not advised for use in a clinical setting.
MULTIFILE
In order to guarantee structural integrity of marine structures in an effective way, operators of these structures seek an affordable, simple and robust system for monitoring detected cracks. Such systems are not yet available and the authors took a challenge to research a possibility of developing such a system. The paper describes the initial research steps made. In the first place, this includes reviewing conventional and recent methods for sensing and monitoring fatigue cracks and discussing their applicability for marine structures. A special attention is given to the promising but still developing new sensing techniques. In the second place, wireless network systems are reviewed because they form an attractive component of the desired system. The authors conclude that it is feasible to develop the monitoring system for detected cracks in marine structures and elaborate on implications of availability of such a system on risk based inspections and structural health monitoring systems