Twirre is a new architecture for mini-UAV platforms designed for autonomous flight in both GPS-enabled and GPS-deprived applications. The architecture consists of low-cost hardware and software components. High-level control software enables autonomous operation. Exchanging or upgrading hardware components is straightforward and the architecture is an excellent starting point for building low-cost autonomous mini-UAVs for a variety of applications. Experiments with an implementation of the architecture are in development, and preliminary results demonstrate accurate indoor navigation
MULTIFILE
The paper introduced an automatic score detection model using object detection techniques. The performance of sevenmodels belonging to two different architectural setups was compared. Models like YOLOv8n, YOLOv8s, YOLOv8m, RetinaNet-50, and RetinaNet-101 are single-shot detectors, while Faster RCNN-50 and Faster RCNN-101 belong to the two-shot detectors category. The dataset was manually captured from the shooting range and expanded by generating more versatile data using Python code. Before the dataset was trained to develop models, it was resized (640x640) and augmented using Roboflow API. The trained models were then assessed on the test dataset, and their performance was compared using matrices like mAP50, mAP50-90, precision, and recall. The results showed that YOLOv8 models can detect multiple objects with good confidence scores.