Deze publicatie is binnen het project 'nieuwe materialen' ontwikkeld en geeft informatie over het ontwerpen van dunne metaalplaat producten met diktes van 0,3 t/m ca. 3 mm, uitgaande van de Eindige Elementen Methode. In het kader van dit project zijn tevens uitgegeven: TI.04.18 'Hoge Sterkte Staal in dunne plaat en buis', TI.04.19 'Roestvast staal in dunne plaat en buis', TI.04.20 'Scheidingstechnieken voor dunne plaat en buis' en TI.04.21 'Aluminium in dunne plaat en buis'.
During the 2015 Gorkha earthquake of 7.8 Mw that hit Kathmandu Valley, Nepal, numerous Nepalese Pagodas suffered extensive damage while others collapsed. Risk reduction strategies implemented in the region focused on disassembling historical structures and rebuilding them with modern material without in depth analysis of why they suffer damage and collapse. The aim of this paper is to evaluate the effectiveness of low-cost, low-intervention, reversible repair and strengthening options for the Nepalese Pagodas. As a case study, the Jaisedewal Temple, typical example of the Nepalese architectural style, was investigated. A nonlinear three-dimensional finite element model of the Jaisedewal Temple was developed and the seismic performance of the temple was assessed by undertaking linear, nonlinear static and nonlinear dynamic analyses. Also, different structural intervention options, suggested by local engineers and architects working in the restoration of temples in Nepal, were examined for their efficacy to withstand strong earthquake vibrations. Additionally, the seismic response of the exposed foundation that the Nepalese Pagodas are sitting on was investigated. From the results analysis, it was found that pushover analysis failed to capture the type of failure which highlights the necessity to perform time-history analysis to accurately evaluate the seismic response of the investigated temple. Also, stiffening the connections along the temple was found to enhance the seismic behaviour of the temple, while strengthening the plinth base was concluded to be insignificant. Outputs from this research could contribute towards the strategic planning and conservation of multi-tiered temples across Nepal and reduce their risk to future earthquake damage without seriously affecting their beautiful architectural heritage.
The prediction of mechanical elastic response of laminated hybrid polymer composites with basic carbon nanostructure, that is carbon nanotubes and graphene, inclusions has gained importance in many advanced industries like aerospace and automotive. For this purpose, in the current work, a hierarchical, four-stage, multilevel framework is established, starting from the nanoscale, up to the laminated hybrid composites. The proposed methodology starts with the evaluation of the mechanical properties of carbon nanostructure inclusions, at the nanoscale, using advanced 3D spring-based finite element models. The nanoinclusions are considered to be embedded randomly in the matrix material, and the Halpin-Tsai model is used in order to compute the average properties of the hybrid matrix at the lamina micromechanics level. Then, the standard Halpin-Tsai equations are employed to establish the orthotropic elastic properties of the unidirectional carbon fiber composite at the lamina macromechanics level. Finally, the lamination theory is implemented in order to establish the macroscopic force-strain and moment-curvature relations at the laminate level. The elastic mechanical properties of specific composite configurations and their performance in different mechanical tests are evaluated using finite element analysis and are found to considerably increase with the nanomaterial volume fraction increase for values up to 0.5. Further, the hybrid composite structures with graphene inclusions demonstrate better mechanical performance as compared to the identical structures with CNT inclusions. Comparisons with theoretical or other numerical techniques, where it is possible, demonstrate the accuracy of the proposed technique.