In the Dutch armed forces clothing sizes are determined using 3D body scans. To evaluate if the predicted size based on the scan analysis matches the best fit, 35 male soldiers fitted a combat jacket and combat pants. It was shown that the predicted jacket size was slightly too large. Therefore, an adjustment was proposed. The predicted and preferred pant size matched rather well. We further investigated discrepancies between predicted and preferred sizes using virtual fitting analysis. Colour maps showing the difference between garment and body circumference illustrated that some soldiers selected a garment size that was obviously too small or too large. In order to minimize the effect of personal preference and maximize standardize ease, we recommend to maintain the current size prediction (with minor corrections for jackets) and use virtual fitting selectively as a control measure.
Peak oxygen uptake (V'O2peak) is recognised as the best expression of aerobic fitness. Therefore, it is essential that V'O2peak reference values are accurate for interpreting a cardiopulmonary exercise test (CPET). These values are country specific and influenced by underlying biological ageing processes. They are normally stratified per paediatric and adult population, resulting in a discontinuity at the transition point between prediction equations. There are currently no age-related reference values available for the lifespan of individuals in the Dutch population. The aim of this study is to determine the best-fitting regression model for V'O2peak in the healthy Dutch paediatric and adult populations in relation to age. In this retrospective study, CPET cycle ergometry results of 4477 subjects without reported somatic diseases were included (907 females, age 7.9-65.0 years). Generalised additive models were employed to determine the best-fitting regression model. Cross-validation was performed against an independent dataset consisting of 3518 subjects (170 females, age 6.8-59.0 years). An additive model was the best fitting with the largest predictive accuracy in both the primary (adjusted R2=0.57, standard error of the estimate (see)=556.50 mL·min-1) and cross-validation (adjusted R2=0.57, see=473.15 mL·min-1) dataset. This study provides a robust additive regression model for V'O2peak in the Dutch population.
LINK
The pace of technology advancements continues to accelerate, and impacts the nature of systems solutions along with significant effects on involved stakeholders and society. Design and engineering practices with tools and perspectives, need therefore to evolve in accordance to the developments that complex, sociotechnical innovation challenges pose. There is a need for engineers and designers that can utilize fitting methods and tools to fulfill the role of a changemaker. Recognized successful practices include interdisciplinary methods that allow for effective and better contextualized participatory design approaches. However, preliminary research identified challenges in understanding what makes a specific method effective and successfully contextualized in practice, and what key competences are needed for involved designers and engineers to understand and adopt these interdisciplinary methods. In this proposal, case study research is proposed with practitioners to gain insight into what are the key enabling factors for effective interdisciplinary participatory design methods and tools in the specific context of sociotechnical innovation. The involved companies are operating at the intersection between design, technology and societal impact, employing experts who can be considered changemakers, since they are in the lead of creative processes that bring together diverse groups of stakeholders in the process of sociotechnical innovation. A methodology will be developed to capture best practices and understand what makes the deployed methods effective. This methodology and a set of design guidelines for effective interdisciplinary participatory design will be delivered. In turn this will serve as a starting point for a larger design science research project, in which an educational toolkit for effective participatory design for socio-technical innovation will be designed.
The growing demand for both retrofitting and refitting, driven by an aging global fleet and decarbonization efforts, including the need to accommodate alternative fuels such as LNG, methanol, and ammonia, offers opportunities for sustainability. However, they also pose challenges, such as emissions generated during these processes and the environmental impacts associated with the disposal of old components. The region Rotterdam and Drechtsteden form a unique Dutch maritime ecosystem of port logistics, shipbuilding, offshore operations, and innovation facilities, supported by Europe’s largest port and world-class infrastructure connecting global trade routes. The Netherlands’ maritime sector, including the sector concentrated in Zuid-Holland, is facing competition from subsidized Asian companies, leading to a steep decline in Europe’s shipbuilding market share from 45% in the 1980s to just 4% in 2023. Nonetheless, the shift toward climate-neutral ships presents economic opportunities for Dutch maritime companies. Thus, developing CE approaches to refitting is essential for promoting sustainability and addressing the pressing environmental and competitive challenges facing the sector and has led companies in the sector to establish the Open Joint Industry Project (OJIP) called Circolab of which this PD forms the core.
The energy transition is a highly complex technical and societal challenge, coping with e.g. existing ownership situations, intrusive retrofit measures, slow decision-making processes and uneven value distribution. Large scale retrofitting activities insulating multiple buildings at once is urgently needed to reach the climate targets but the decision-making of retrofitting in buildings with shared ownership is challenging. Each owner is accountable for his own energy bill (and footprint), giving a limited action scope. This has led to a fragmented response to the energy retrofitting challenge with negligible levels of building energy efficiency improvements conducted by multiple actors. Aggregating the energy design process on a building level would allow more systemic decisions to happen and offer the access to alternative types of funding for owners. “Collect Your Retrofits” intends to design a generic and collective retrofit approach in the challenging context of monumental areas. As there are no standardised approaches to conduct historical building energy retrofits, solutions are tailor-made, making the process expensive and unattractive for owners. The project will develop this approach under real conditions of two communities: a self-organised “woongroep” and a “VvE” in the historic centre of Amsterdam. Retrofit designs will be identified based on energy performance, carbon emissions, comfort and costs so that a prioritisation strategy can be drawn. Instead of each owner investing into their own energy retrofitting, the neighbourhood will invest into the most impactful measures and ensure that the generated economic value is retained locally in order to make further sustainable investments and thus accelerating the transition of the area to a CO2-neutral environment.