Background The Six-Minute Walk Test (6MWT) is increasingly being used as a functional outcome measure for chronic pediatric conditions. Knowledge about its measurement properties is needed to determine whether it is an appropriate test to use. Purpose The purpose of this study was to systematically review all published clinimetric studies on the 6MWT in chronic pediatric conditions. Data Sources The databases MEDLINE, EMBASE, CINAHL, PEDro, and SPORTDiscus were searched up to February 2012. Study Selection Studies designed to evaluate measurement properties of the 6MWT in a chronic pediatric condition were included in the systematic review. Data Extraction The methodological quality of the included studies and the measurement properties of the 6MWT were examined. Data Synthesis A best evidence synthesis was performed on 15 studies, including 9 different chronic pediatric conditions. Limited evidence to strong evidence was found for reliability in various chronic conditions. Strong evidence was found for positive criterion validity of the 6MWT with peak oxygen uptake in some populations, but negative criterion validity was found in other populations. Construct validity remained unclear in most patient groups because of methodological flaws. Little evidence was available for responsiveness and measurement error. Studies showed large variability in test procedures despite existing guidelines for the performance of the 6MWT. Limitations Unavailability of a specific checklist to evaluate the methodological quality of clinimetric studies on performance measures was a limitation of the study. Conclusions Evidence for measurement properties of the 6MWT varies largely among chronic pediatric conditions. Further research is needed in all patient groups to explore the ability of the 6MWT to measure significant and clinically important changes. Until then, changes measured with the 6MWT should be interpreted with caution. Future studies or consensus regarding modified test procedures in the pediatric population is recommended.
Objective: To systematically review and critically appraise the literature on measurement properties of cardiopulmonary exercise test protocols for measuring aerobic capacity, VO2max, in persons after stroke. Data sources: PubMed, Embase and Cinahl were searched from inception up to 15 June 2016. A total of 9 studies were identified reporting on 9 different cardiopulmonary exercise test protocols. Study selection: VO2max measured with cardiopulmonary exercise test and open spirometry was the construct of interest. The target population was adult persons after stroke. We included all studies that evaluated reliability, measurement error, criterion validity, content validity, hypothesis testing and/ or responsiveness of cardiopulmonary exercise test protocols. Data extraction: Two researchers independently screened the literature, assessed methodological quality using the COnsensus-based Standards for the selection of health Measurement INstruments checklist and extracted data on measurement properties of cardiopulmonary exercise test protocols. Data synthesis: Most studies reported on only one measurement property. Best-evidence synthesis was derived taking into account the methodological quality of the studies, the results and the consistency of the results. Conclusion: No judgement could be made on which protocol is “best” for measuring VO2max in persons after stroke due to lack of high-quality studies on the measurement properties of the cardiopulmonary exercise test.
Background: To experience external objects in such a way that they are perceived as an integral part of one's own body is called embodiment. Wearable technology is a category of objects, which, due to its intrinsic properties (eg, close to the body, inviting frequent interaction, and access to personal information), is likely to be embodied. This phenomenon, which is referred to in this paper as wearable technology embodiment, has led to extensive conceptual considerations in various research fields. These considerations and further possibilities with regard to quantifying wearable technology embodiment are of particular value to the mobile health (mHealth) field. For example, the ability to predict the effectiveness of mHealth interventions and knowing the extent to which people embody the technology might be crucial for improving mHealth adherence. To facilitate examining wearable technology embodiment, we developed a measurement scale for this construct. Objective: This study aimed to conceptualize wearable technology embodiment, create an instrument to measure it, and test the predictive validity of the scale using well-known constructs related to technology adoption. The introduced instrument has 3 dimensions and includes 9 measurement items. The items are distributed evenly between the 3 dimensions, which include body extension, cognitive extension, and self-extension.Methods: Data were collected through a vignette-based survey (n=182). Each respondent was given 3 different vignettes, describing a hypothetical situation using a different type of wearable technology (a smart phone, a smart wristband, or a smart watch) with the purpose of tracking daily activities. Scale dimensions and item reliability were tested for their validity and Goodness of Fit Index (GFI). Results: Convergent validity of the 3 dimensions and their reliability were established as confirmatory factor analysis factor loadings45 (>0.70), average variance extracted values40 (>0.50), and minimum item to total correlations50 (>0.40) exceeded established threshold values. The reliability of the dimensions was also confirmed as Cronbach alpha and composite reliability exceeded 0.70. GFI testing confirmed that the 3 dimensions function as intercorrelated first-order factors. Predictive validity testing showed that these dimensions significantly add to multiple constructs associated with predicting the adoption of new technologies (ie, trust, perceived usefulness, involvement, attitude, and continuous intention). Conclusions: The wearable technology embodiment measurement instrument has shown promise as a tool to measure the extension of an individual's body, cognition, and self, as well as predict certain aspects of technology adoption. This 3-dimensional instrument can be applied to mixed method research and used by wearable technology developers to improve future versions through such things as fit, improved accuracy of biofeedback data, and customizable features or fashion to connect to the users' personal identity. Further research is recommended to apply this measurement instrument to multiple scenarios and technologies, and more diverse user groups.
Historical sites, specifically former military fortifications, are often repurposed for tourism and recreation. While some of over 100 Dutch forts are recognized as UNESCO World Heritage sites, a substantial number are currently underdeveloped, putting their heritage value and biodiversity at risk. This demands action, as forts are well-positioned to relieve overtourism in other locations, responding to the Netherlands Board of Tourism and Convention's call to spread visitors to lesser-known areas. Furthermore, developing lesser-known fort sites could provide tourism and recreation opportunities near populated areas, thus contributing to the well-being not only of visitors but also the environment. Development initiatives depend on a transition from isolation to cooperation across sites. However, for cooperation to be effective, enterprises and agencies managing these forts still lack data regarding visitor expectations and experiences. We will employ a multidisciplinary approach to capturing visitor demographics, motivations, and experiences, through conducting quantitative questionnaires, lab-driven physiological experience measurement, and location tracking. This proposal builds on the previous project, “Experiencing Nature”, funded by Centre of Expertise in Leisure, Tourism, and Hospitality, which utilized Breda Experience Lab technologies to explore visitor experiences at Fort de Roovere. In sum, the purpose of the present project is to measure and analyze visitor demographics, motivations, and experiences at less-developed forts, and to develop a toolkit to inspire, support, and monitor development of these forts for heritage preservation, visitor experience, and biodiversity. The project will be conducted in collaboration with Flemish partners, thereby forming the consortium comprised of the Alliantie ZuiderWaterlinie (NL), Regionale Landschappen (VL), and Agentschap Natuur en Bos (VL), with support from municipalities in both countries. The project will promote regional synergies and facilitate long-lasting cross-border collaboration, especially toward coming Interreg EU proposals, whilst informing the design of interregional marketing campaigns and supporting planning for visitor flows and biodiversity conservation efforts. Collaborative partnersNHL Stenden, Alliantie Zuidwaterlinie, RLRL, Agentschap Natuur en Bos.
Human kind has a major impact on the state of life on Earth, mainly caused by habitat destruction, fragmentation and pollution related to agricultural land use and industrialization. Biodiversity is dominated by insects (~50%). Insects are vital for ecosystems through ecosystem engineering and controlling properties, such as soil formation and nutrient cycling, pollination, and in food webs as prey or controlling predator or parasite. Reducing insect diversity reduces resilience of ecosystems and increases risks of non-performance in soil fertility, pollination and pest suppression. Insects are under threat. Worldwide 41 % of insect species are in decline, 33% species threatened with extinction, and a co-occurring insect biomass loss of 2.5% per year. In Germany, insect biomass in natural areas surrounded by agriculture was reduced by 76% in 27 years. Nature inclusive agriculture and agri-environmental schemes aim to mitigate these kinds of effects. Protection measures need success indicators. Insects are excellent for biodiversity assessments, even with small landscape adaptations. Measuring insect biodiversity however is not easy. We aim to use new automated recognition techniques by machine learning with neural networks, to produce algorithms for fast and insightful insect diversity indexes. Biodiversity can be measured by indicative species (groups). We use three groups: 1) Carabid beetles (are top predators); 2) Moths (relation with host plants); 3) Flying insects (multiple functions in ecosystems, e.g. parasitism). The project wants to design user-friendly farmer/citizen science biodiversity measurements with machine learning, and use these in comparative research in 3 real life cases as proof of concept: 1) effects of agriculture on insects in hedgerows, 2) effects of different commercial crop production systems on insects, 3) effects of flower richness in crops and grassland on insects, all measured with natural reference situations
The integration of renewable energy resources, controllable devices and energy storage into electricity distribution grids requires Decentralized Energy Management to ensure a stable distribution process. This demands the full integration of information and communication technology into the control of distribution grids. Supervisory Control and Data Acquisition (SCADA) is used to communicate measurements and commands between individual components and the control server. In the future this control is especially needed at medium voltage and probably also at the low voltage. This leads to an increased connectivity and thereby makes the system more vulnerable to cyber-attacks. According to the research agenda NCSRA III, the energy domain is becoming a prime target for cyber-attacks, e.g., abusing control protocol vulnerabilities. Detection of such attacks in SCADA networks is challenging when only relying on existing network Intrusion Detection Systems (IDSs). Although these systems were designed specifically for SCADA, they do not necessarily detect malicious control commands sent in legitimate format. However, analyzing each command in the context of the physical system has the potential to reveal certain inconsistencies. We propose to use dedicated intrusion detection mechanisms, which are fundamentally different from existing techniques used in the Internet. Up to now distribution grids are monitored and controlled centrally, whereby measurements are taken at field stations and send to the control room, which then issues commands back to actuators. In future smart grids, communication with and remote control of field stations is required. Attackers, who gain access to the corresponding communication links to substations can intercept and even exchange commands, which would not be detected by central security mechanisms. We argue that centralized SCADA systems should be enhanced by a distributed intrusion-detection approach to meet the new security challenges. Recently, as a first step a process-aware monitoring approach has been proposed as an additional layer that can be applied directly at Remote Terminal Units (RTUs). However, this allows purely local consistency checks. Instead, we propose a distributed and integrated approach for process-aware monitoring, which includes knowledge about the grid topology and measurements from neighboring RTUs to detect malicious incoming commands. The proposed approach requires a near real-time model of the relevant physical process, direct and secure communication between adjacent RTUs, and synchronized sensor measurements in trustable real-time, labeled with accurate global time-stamps. We investigate, to which extend the grid topology can be integrated into the IDS, while maintaining near real-time performance. Based on topology information and efficient solving of power flow equation we aim to detect e.g. non-consistent voltage drops or the occurrence of over/under-voltage and -current. By this, centrally requested switching commands and transformer tap change commands can be checked on consistency and safety based on the current state of the physical system. The developed concepts are not only relevant to increase the security of the distribution grids but are also crucial to deal with future developments like e.g. the safe integration of microgrids in the distribution networks or the operation of decentralized heat or biogas networks.