OBJECTIVE: Osteopenia is a common complication of juvenile idiopathic arthritis (JIA). In adults, low bone density and increased fracture risk are associated with low vitamin K status of bone. The vitamin K-dependent protein osteocalcin plays an important role in bone metabolism. Its activity depends upon post-translational carboxylation in which vitamin K is an essential co-factor. Hence, vitamin K deficiency leads to under-carboxylated (i.e., inactive) osteocalcin (ucOC). Little is known about the vitamin K status and bone health in children with juvenile idiopathic arthritis (JIA). We studied the vitamin K status of bone and its association with bone mass properties in children with JIA compared to healthy children.METHODS: We performed a cross sectional study in 55 children with JIA and 54 healthy controls between 6-18 years of age. Bone markers, ultrasound bone mass properties and vitamin K status of bone were determined.RESULTS: Overall, no differences in vitamin K status of bone were found between the study groups. Among children with JIA, a high ratio of ucOC/cOC indicating low vitamin K status was associated with low bone ultrasound parameters, whereas children with a high vitamin K status had markedly higher bone properties. This association was independent of physical activity, age, gender and BMI.CONCLUSION: These results suggest that vitamin K may be one of multiple risk factors for low bone mass in children with JIA, in addition to other recognized determinants of bone mass. The question remains whether JIA patients would benefit from increased dietary vitamin K intake.
DOCUMENT
BACKGROUND: Physical activity may be both a risk and protective factor for falls and fall-related fractures. Despite its positive effects on muscle and bone health, physical activity also increases exposure to situations where falls and fractures occur. This paradox could possibly be explained by frailty status. Therefore, the aim of this study was to investigate the associations between physical activity and both falls and fractures, and to determine whether frailty modifies the association of physical activity with falls, and fractures.METHODS: Data of 311 community-dwelling participants aged 75 years or older from the Longitudinal Aging Study Amsterdam, who participated in a three-year longitudinal study with five nine-monthly measurements between 2015/2016 and 2018/2019. Their mean age was 81.1 (SD 4.8) years and frailty was present in 30.9% of the participants. Physical activity in minutes per day was objectively assessed with an inertial sensor (Actigraph) for seven consecutive days. Falls and fractures were assessed every nine months using self-report during an interview over a follow-up period of three years. Frailty was determined at baseline using the frailty index. Associations were estimated using longitudinal logistic regression analyses based on generalized estimating equations.RESULTS: No association between physical activity and falls was found (OR = 1.00, 95% CI: 0.99-1.00). Fall risk was higher in frail compared to non-frail adults (OR = 2.21, 95% CI: 1.33-3.68), but no effect modification was seen of frailty on the association between physical activity and falls. Also no relation between physical activity and fractures was found (OR = 1.00, 95% CI: 0.99-1.01). Fracture risk was higher in frail compared to non-frail adults (OR = 2.81, 95% CI: 1.02-7.75), but also no effect modification of frailty was present in the association between physical activity and fractures.CONCLUSIONS: No association between physical activity and neither falls nor fractures was found, and frailty appeared not to be an effect modifier. However, frailty was a risk factor for falls and fractures in this population of older adults. Our findings suggest that physical activity can be safely recommended in non-frail and frail populations for general health benefits, without increasing the risk of falls.
MULTIFILE
OBJECTIVE: Evaluate clinical outcome of early cyclic intravenous pamidronate treatment in children with moderate-to-severe osteogenesis imperfecta (OI), commenced before three years of age.METHODS: A retrospective review of 17 patients with moderate-to-severe OI. Development, anthropometry, fracture history, bone mineral density (BMD) and biochemistry were collected at baseline, 12 and 24 months.RESULTS: Four had OI type I, eleven had type III, one OI-FKBP10 type and one OI type V. Mean age at start of pamidronate was 14 ± 11 months. Pamidronate ranged from 6 to 12 mg/kg/year. No adverse reaction apart from fever and vomiting was noted. Long bone fracture decreased from a mean of 10.4/year to 1.2/year after 12 months and 1.4/year after 24 months (p = 0.02). Lumbar spine age- and height-matched BMD Z-scores increased (p < 0.005). Sixteen with vertebral compression fractures at baseline all showed improved vertebral shape (p < 0.001). Concavity index, likewise, improved (p < 0.005). Motor milestones compared to historical data show earlier attainment in rolling over, crawling, pulling to stand and walking independently but not sitting.CONCLUSION: Cyclic intravenous pamidronate, started under 3 years of age in children with moderate-to-severe OI, was well tolerated and associated with an increase in lumbar spine BMD, reduced fracture frequency, vertebral remodelling and attainment of motor milestones at an earlier age.
DOCUMENT