KLM has revealed the plan to downsize the full-freight cargo fleet in Schiphol Airport, for that reason the company requires to explore the consequences of moving the cargo transported by the full freighters into the bellies of the passenger flights. In this study, the authors analyze the implications of this decision by considering the variability of the load factors and the impact that replacing old aircraft might have. The study addresses how the transition towards the belly operation should impact the current operation of KLM at Schiphol. Our study show that the replacement of old aircraft with new 787s and 777s will have significant effect on the cargo capacity of the company. The results rise the discussion on future problems to be faced and how to make the transition from full freighter to belly operation.
In the city of Amsterdam commercial transport is responsible for 15% of vehicles, 34% of traffic’s CO2 emissions and 62% of NOx emissions. The City of Amsterdam plans to improve traffic flows using real time traffic data and data about loading and unloading zones. In this paper, we present, reflect, and discuss the results of two projects from the Amsterdam University of Applied Sciences with research partners from 2016 till 2018. The ITSLOG and Sailor projects aim to analyze and test the benefits and challenges of connecting ITS and traffic management to urban freight transport, by using real-time data about loading and unloading zone availability for rerouting trucks. New technologies were developed and tested in collaboration with local authorities, transport companies and a food retailer. This paper presents and discusses the opportunities and challenges faced in developing and implementing this new technology, as well as the role played by different stakeholders. In both projects, the human factor was critical for the implementation of new technologies in practice.
MULTIFILE