Problems of energy security, diversification of energy sources, and improvement of technologies (including alternatives) for obtaining motor fuels have become a priority of science and practice today. Many scientists devote their scientific research to the problems of obtaining effective brands of alternative (reformulated) motor fuels. Our scientific school also deals with the problems of the rational use of traditional and alternative motor fuels.This article focused on advances in motor fuel synthesis using natural, associated, or biogas. Different raw materials are used for GTL technology: biomass, natural and associated petroleum gases. Modern approaches to feed gas purification, development of Gas-to-Liquid-technology based on Fischer–Tropsch synthesis, and liquid hydrocarbon mixture reforming are considered.Biological gas is produced in the process of decomposition of waste (manure, straw, grain, sawdust waste), sludge, and organic household waste by cellulosic anaerobic organisms with the participation of methane fermentation bacteria. When 1 tonne of organic matter decomposes, 250 to 500–600 cubic meters of biogas is produced. Experts of the Bioenergy Association of Ukraine estimate the volume of its production at 7.8 billion cubic meters per year. This is 25% of the total consumption of natural gas in Ukraine. This is a significant raw material potential for obtaining liquid hydrocarbons for components of motor fuels.We believe that the potential for gas-to-liquid synthetic motor fuels is associated with shale and coalfield gases (e.g. mine methane), methane hydrate, and biogas from biomass and household waste gases.
DOCUMENT
Emissions from aviation will continue to increase in the future, in contradiction of global climate policy objectives. Yet, airlines and airline organisations suggest that aviation will become climatically sustainable. This paper investigates this paradox by reviewing fuel-efficiency gains since the 1960s in comparison to aviation growth, and by linking these results to technology discourses, based on a two-tiered approach tracing technology-focused discourses over 20 years (1994-2013). Findings indicate that a wide range of solutions to growing emissions from aviation have been presented by industry, hyped in global media, and subsequently vanished to be replaced by new technology discourses. Redundant discourses often linger in the public domain, where they continue to be associated with industry aspirations of 'sustainable aviation' and 'zero-emission flight'. The paper highlights and discusses a number of technology discourses that constitute 'technology myths', and the role these 'myths' may be playing in the enduring but flawed promise of sustainable aviation. We conclude that technology myths require policy-makers to interpret and take into account technical uncertainty, which may result in inaction that continues to delay much needed progress in climate policy for aviation.
LINK
On the 11th of may 2016 dr. ir. J. Dam officially started his professorship in Sustainable LNG Technology at the Hanze University of Applied Science. In this Inaugural speech he declared his hopes and plans for the Hanze University and it's Centre of Expertise - Energy.
DOCUMENT
Densely populated areas are major sources of air, soil and water pollution. Agriculture, manufacturing, consumer households and road traffic all have their share. This is particularly true for the country featured in this paper: the Netherlands. Continuous pollution of the air and soil manifests itself as acification, decalcification and eutrofication. Biodiversity becomes lower and lower in nature areas. Biological farms are also under threat. In case of mobility, local air pollution may have a huge health impact. Effective policy is called for, after high courts blocked construction projects, because of foreseen building- and transport-related NOx emissions. EU law makers are after Dutch governments, because these favoured economics and politics over environmental and liveability concerns. But, people in the Netherlands are strongly divided. The latest provincial elections were dominated by environmental concerns, next to many socio-economic issues. NOx and CO2 emissions by passenger cars are in focus. Technical means and increasing fuel economy norms strongly reduced NOx emissions to a still too high level. A larger number of cars neutralized a technological reduction of CO2 emissions. The question is: What would be the impact of a drastic mandatory reduction in CO2, NOx, and PM10 emissions on car ownership and use in the Netherlands? The authors used literature, scenario analysis and simulation modelling to answer this question. Electric mobility could remove these emissions. Its full impact will only be achieved if the grid-mix, which is still dominated by fossil fuels, becomes green(er), which is a gradual, long-term, process. EVs compete with other consumers of electricity, as many other activities, such as heating, are also electrifying. With the current grid-mix, it is inevitable that the number of km per vehicle per year is reduced to reach the scenario targets (−25% resp. −50% CO2 emissions by cars). This calls for an individual mobility budget per car user.
LINK
This article provides a nano (hyperlocal) view of climate change mitigation by viewing regenerative organizing through the eyes (as well as bodies and senses, etc.) of the households engaged in community-based energy projects. By showing what humans make up for in the largely absent relationship between nature and technology in these projects, we envision an incremental extension of the literature on community-based energy. The radically different contribution we aim to make is a tripartite imbrication that brings in natural agency alongside the human and the technical but specifies precisely how nano (smaller than micro) embodied practices afford mis- and realignments. https://doi.org/10.1177/1086026619886841 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
With the effects of climate change linked to the use of fossil fuels, as well as the prospect of their eventual depletion, becoming more noticeable, political establishment and society appear ready to switch towards using renewable energy. Solar power and wind power are considered to be the most significant source of global low-carbon energy supply. Wind energy continues to expand as it becomes cheaper and more technologically advanced. Yet, despite these expectations and developments, fossil fuels still comprise nine-tenths of the global commercial energy supply. In this article, the history, technology, and politics involved in the production and barriers to acceptance of wind energy will be explored. The central question is why, despite the problems associated with the use of fossil fuels, carbon dependency has not yet given way to the more ecologically benign forms of energy. Having briefly surveyed some literature on the role of political and corporate stakeholders, as well as theories relating to sociological and psychological factors responsible for the grassroots’ resistance (“not in my backyard” or NIMBYs) to renewable energy, the findings indicate that motivation for opposition to wind power varies. While the grassroots resistance is often fueled by the mistrust of the government, the governments’ reason for resisting renewable energy can be explained by their history of a close relationship with the industrial partners. This article develops an argument that understanding of various motivations for resistance at different stakeholder levels opens up space for better strategies for a successful energy transition. https://doi.org/10.30560/sdr.v1n1p11 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Hoewel de klimaat- en ecologische crisis de grootste bedreiging voor de volksgezondheid is, krijgt deze in geen van de Nederlandse zorginstellingen de hoogste prioriteit. Steeds meer zorgprofessionals doen vanuit hun beroepseed aan klimaatactivisme, ook als dit vreedzame burgerlijke ongehoorzaamheid omvat. Ze ondervinden vaak weerstand omdat dit als onprofessioneel wordt gezien. Dit betekent echter niet dat activistische zorgprofessionals onprofessioneel zijn, maar dat het idee van wat professionaliteit is moet worden aangepast aan het beroep dat wetenschap en wereld in tijden van klimaat- en ecologische crisis op de zorgprofessional doen. Zorginstellingen zouden klimaatactivisme daarom moeten faciliteren of zelfs toejuichen.
LINK
Seafood is a highly traded commodity that is exposed to a wide range of environmental and social sustainability challenges. Digitalization of the seafood value chain helps to address these challenges. Using Global Value Chain (GVC) analysis, this paper presents a qualitative case study on the conditions for adoption of digitalization by Dutch fisheries. Field results show the different digital technologies available in the Dutch fisheries ranging from sensors, Internet-of-Things, blockchain, and Artificial Intelligence. Despite several identified incentives such as improved fuel efficiency, reduced fishing time, and increased catch productivity, there is in general a low commitment from fishers to adopt digital technologies. First, the benefits are perceived to be uncertain due to costs, investments, and inherent risks associated with technology adoption as well as external risks related to prices, catches and government regulations. Second, there is profound resistance from fishers to collect and share data due to lack of trust between fishers and the government, and among fishers due to competitive nature of fishing. This research proposes design arrangement for implementing digitalization that considers: 1) horizontal coordination (producer organization or association) to move from individualistic to collective fishing practices, 2) viable business model to incentivize data collection, 3) connecting fishers to ecosystem of stakeholders for sharing incentives and risks, and 4) technological solutions to protect strategic interests in sharing data. This study contributes to literature by linking GVC governance, sustainability, and digitalization, and by providing a systems approach that considers coordination, incentives, and risks in fishers’ decision making in GVC.
LINK
Methane storage in adsorbed form is a promising way to effectively and safely store fuel for vehicular transportation or for any other potential application. In a solid adsorbent, nanometer wide pores can trap methane by van der Waals forces as high density fluid at low pressure and room temperature. This provides the suitable technology to replace bulky and expensive cylindrical compressed natural gas tanks. Activated carbons with large surface area and high porosity are particularly suitable for methane storage applications at moderate pressures. We study and test the main thermodynamic and kinetic characteristics of methane adsorption and desorption on activated carbon.
DOCUMENT
Several studies have shown that flying electric between the so-called ABC-islands in the Caribbean (i.e., Aruba, Bonaire and Curaçao) is feasible with the upcoming first generation of battery-electric aircraft. This paper presents a real-world case study that deals with the technical and operational characteristics of electric flight in that region. With that purpose, the Aruba Airport Authority (AAA) commissioned this investigation, which involved numerous local stakeholders, such as airlines, energy providers and navigation services. This study involves two commuter electric aircraft under development, aiming to investigate how they fit in the current operational scheme of three local airlines and three conventional aircraft types in terms of technology, capacity, schedule, performance, CO2 emissions and fuel costs. Conclusions indicate that a transition to batter-electric aircraft is feasible with regards to the aforementioned criteria and with the current technology and energy density of batteries.
DOCUMENT