Functional Magnetic Resonance Imaging (fMRI) was used to study the activation of cerebral motor networks during auditory perception of music in professional keyboard musicians (n=12). The activation paradigm implied that subjects listened to two-part polyphonic music, while either critically appraising the performance or imagining they were performing themselves. Two-part polyphonic audition and bimanual motor imagery circumvented a hemisphere bias associated with the convention of playing the melody with the right hand. Both tasks activated ventral premotor and auditory cortices, bilaterally, and the right anterior parietal cortex, when contrasted to 12 musically unskilled controls. Although left ventral premotor activation was increased during imagery (compared to judgment), bilateral dorsal premotor and right posterior-superior parietal activations were quite unique to motor imagery. The latter suggests that musicians not only recruited their manual motor repertoire but also performed a spatial transformation from the vertically perceived pitch axis (high and low sound) to the horizontal axis of the keyboard. Imagery-specific activations in controls were seen in left dorsal parietal-premotor and supplementary motor cortices. Although these activations were less strong compared to musicians, this overlapping distribution indicated the recruitment of a general 'mirror-neuron' circuitry. These two levels of sensori-motor transformations point towards common principles by which the brain organizes audition-driven music performance and visually guided task performance.
DOCUMENT
Objective Animal data suggest that exercise during chemotherapy is cardioprotective, but clinical evidence to support this is limited. This study evaluated the effect of exercise during chemotherapy for breast cancer on long-term cardiovascular toxicity. Methods This is a follow-up study of two previously performed randomised trials in patients with breast cancer allocated to exercise during chemotherapy or non-exercise controls. Cardiac imaging parameters, including T1 mapping (native T1, extracellular volume fraction (ECV)), left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS), cardiorespiratory fitness, and physical activity levels, were acquired 8.5 years post-treatment. Results In total, 185 breast cancer survivors were included (mean age 58.9±7.8 years), of whom 99% and 18% were treated with anthracyclines and trastuzumab, respectively. ECV and Native T1 were 25.3%±2.5% and 1026±51 ms in the control group, and 24.6%±2.8% and 1007±44 ms in the exercise group, respectively. LVEF was borderline normal in both groups, with an LVEF<50% prevalence of 22.5% (n=40/178) in all participants. Compared with control, native T1 was statistically significantly lower in the exercise group (β=-20.16, 95% CI -35.35 to -4.97). We found no effect of exercise on ECV (β=-0.69, 95% CI -1.62 to 0.25), LVEF (β=-1.36, 95% CI -3.45 to 0.73) or GLS (β=0.31, 95% CI -0.76 to 1.37). Higher self-reported physical activity levels during chemotherapy were significantly associated with better native T1 and ECV. Conclusions In long-term breast cancer survivors, exercise and being more physically active during chemotherapy were associated with better structural but not functional cardiac parameters. The high prevalence of cardiac dysfunction calls for additional research on cardioprotective measures, including alternative exercise regimens. Trial registration number NTR7247.
DOCUMENT
ObjectiveThe Plants for Joints (PFJ) intervention significantly improved pain, stiffness, and physical function, and metabolic outcomes, in people with metabolic syndrome-associated osteoarthritis (MSOA). This secondary analysis investigated its effects on body composition.MethodIn the randomized PFJ study, people with MSOA followed a 16-week intervention based on a whole-food plant-based diet, physical activity, and stress management, or usual care. For this secondary analysis, fat mass, muscle mass, and bone mineral density were measured using dual-energy X-ray absorptiometry (DEXA) for all participants. Additionally, in a subgroup (n = 32), hepatocellular lipid (HCL) content and composition of visceral adipose tissue (VAT) were measured using magnetic resonance spectroscopy (MRS). An intention-to-treat analysis with a linear-mixed model adjusted for baseline values was used to analyse between-group differences.ResultsOf 66 people randomized, 64 (97%) completed the study. The PFJ group experienced significant weight loss (−5.2 kg; 95% CI –6.9, −3.6) compared to controls, primarily from fat mass reduction (−3.9 kg; 95% CI –5.3 to −2.5). No significant differences were found in lean mass, muscle strength, or bone mineral density between groups. In the subgroup who underwent MRI scans, the PFJ group had a greater reduction in HCL (−6.5%; 95% CI –9.9, 3.0) compared to controls, with no observed differences in VAT composition.ConclusionThe PFJ multidisciplinary intervention positively impacted clinical and metabolic outcomes, and appears to significantly reduce body fat, including liver fat, while preserving muscle mass and strength.
MULTIFILE
Swallowing muscle strength exercises are effective in restoring swallowing function. In order to perform the exercises with progressive load, the swallow exercise aid (SEA) was developed. Precise knowledge on which muscles are activated with swallowing exercises, especially with the SEA, is lacking. This knowledge would aid in optimizing the training program to target the relevant swallowing muscles, if necessary. Three healthy volunteers performed the three SEA exercises (chin tuck against resistance, jaw opening against resistance and effortful swallow) and three conventional exercises [conventional effortful swallow (cES), Shaker and Masako] in supine position inside an MRI scanner. Fast muscle functional MRI scans (generating quantitative T2-maps) were made immediately before and after the exercises. Median T2 values at rest and after exercise were compared to identify activated muscles. After the three SEA exercises, the suprahyoid, infrahyoid, sternocleidomastoid, and lateral pterygoid muscles showed significant T2 value increase. After the Shaker, the lateral pterygoid muscles did not show such an increase, but the three other muscle groups did. The cES and Masako caused no significant increase in any of these muscle groups. During conventional (Shaker) exercises, the suprahyoid, infrahyoid, and sternocleidomastoid muscles are activated. During the SEA exercises, the suprahyoid, infrahyoid, sternocleidomastoid, and lateral pterygoid muscles are activated. The findings of this explorative study further support the potential of the SEA to improve swallowing rehabilitation.
DOCUMENT
The growth of neuroscience studies within tourism has been relatively slow, with limited well-executed studies and little interdisciplinarity. The aim of this review is to stimulate the use of neuroscience within tourism research. It first discusses the synergies to be gained by combining neuroscience with social science, exploring the usefulness and suitability of using neuroscience within tourism. An evaluation of review articles that have critiqued individual applications of neuroscience in tourism is presented, followed by a comprehensive overview of neuroscience methods. We discuss the theoretical relevance of neuroscience and its potential themes for a tourism neuroscience research agenda. This discussion is based on a selective review of wider neuroscience of relevance to tourism, including affective neuroscience, neuromarketing, neuroeconomics and neuromanagement.
LINK
Sinds de eeuwwisseling heeft het gebruik van mental practice (Nederlands: mentale training) en movement imagery (Nederlands: bewegingsvoorstellingen) binnen diverse disciplines in de revalidatie steeds meer aandacht gekregen. Het gebruik van bewegingsvoorstellingen werd daarvoor vooral toegepast in de sport. Mentale training is een complexe interventie. Indien een complexe interventie toegepast gaat worden bij een ‘nieuwe’ doelgroep, zal deze bijgesteld, doorontwikkeld en geëvalueerd moeten worden. De Medical Research Council (MRC) heeft hiervoor een stappenplan ontwikkeld. Onlangs is er een proefschrift verschenen waarbij geprobeerd is aan de hand van de stappen van het MRC-model de transfer vanuit de sport naar de revalidatie te maken bij mensen na een beroerte in de verpleeghuissetting. In dit artikel wordt beschreven hoe het onderzoek heeft plaatsgevonden, welke resultaten bereikt zijn en welke aanbevelingen voor vervolgonderzoek gedaan worden. Eerst wordt kort ingegaan op het gebruik van bewegingsvoorstellingen door sporters.
DOCUMENT
Functional Magnetic Resonance Imaging (fMRI) was used to study the cerebral underpinning of resonance behavior in professional keyboard musicians (n=12). The activation paradigm implied that subjects listened to two-part polyphonic music, while either critically appraising the performance or imagining they were performing themselves. Two-voice audition and bimanual motor imagery circumvented a hemisphere bias associated with a main melody.Both tasks activated ventral premotor and auditory cortices, bilaterally, and the anterior parietal cortex right-dominantly, compared to 12 musically unskilled controls. Although left ventral premotor activation was increased during imagery (compared to judgment), bilateral dorsal premotor and right posterior-superior parietal activations were quite unique to motor imagery, suggesting that musicians not only recruited their manual motor repertoire but alsoperformed a spatial transformation from the vertical perceived pitch axis to the horizontal keyboard. Imagery-specific activations in controls comprised left dorsal parietal-premotor and supplementary motor cortices. Although these activations were less strong compared to musicians, this overlapping distribution indicated the recruitment of a general 'mirror-neuron'circuitry. These two levels of sensori-motor transformations point towards common principles by which the brain organizes audition-driven music performance and visually guided task performance.
DOCUMENT
In the past decade, the fast and transient coupling and uncoupling of functionally related brain regions into networks has received much attention in cognitive neuroscience. Empirical tools to study network coupling include functional magnetic resonance imaging (fMRI)-based functional and/or effective connectivity, and electroencephalography (EEG)/magnetoencephalography-based measures of neuronal synchronization. Here we use simultaneously recorded EEG and fMRI to assess whether fMRI-based connectivity and frequency-specific EEG power are related. Using data collected during resting state, we studied whether posterior EEG alpha power fluctuations are correlated with connectivity within the visual network and between the visual cortex and the rest of the brain. The results show that when alpha power increases, BOLD connectivity between the primary visual cortex and occipital brain regions decreases and that the negative relation of the visual cortex with the anterior/medial thalamus decreases and the ventral–medial prefrontal cortex is reduced in strength. These effects were specific for the alpha band, and not observed in other frequency bands. The decreased connectivity within the visual system may indicate an enhanced functional inhibition during a higher alpha activity. This higher inhibition level also attenuates long-range intrinsic functional antagonism between the visual cortex and the other thalamic and cortical regions. Together, these results illustrate that power fluctuations in posterior alpha oscillations result in local and long-range neural connectivity changes.
LINK
Depression is a highly prevalent and seriously impairing disorder. Evidence suggests that music therapy can decrease depression, though the music therapy that is offered is often not clearly described in studies. The purpose of this study was to develop an improvisational music therapy intervention based on insights from theory, evidence and clinical practice for young adults with depressive symptoms. The Intervention Mapping method was used and resulted in (1) a model to explain how emotion dysregulation may affect depressive symptoms using the Component Process Model (CPM) as a theoretical framework; (2) a model to clarify as to how improvisational music therapy may change depressive symptoms using synchronisation and emotional resonance; (3) a prototype Emotion-regulating Improvisational Music Therapy for Preventing Depressive symptoms (EIMT-PD); (4) a ten-session improvisational music therapy manual aimed at improving emotion regulation and reducing depressive symptoms; (5) a program implementation plan; and (6) a summary of a multiple baseline study protocol to evaluate the effectiveness and principles of EIMT-PD. EIMT-PD, using synchronisation and emotional resonance may be a promising music therapy to improve emotion regulation and, in line with our expectations, reduce depressive symptoms. More research is needed to assess its effectiveness and principles.
DOCUMENT
Semantic unification during sentence comprehension has been associated with amplitude change of the N400 in event-related potential (ERP) studies, and activation in the left inferior frontal gyrus (IFG) in functional magnetic resonance imaging (fMRI) studies. However, the specificity of this activation to semantic unification remains unknown. To more closely examine the brain processes involved in semantic unification, we employed simultaneous EEG-fMRI to time-lock the semantic unification related N400 change, and integrated trial-by-trial variation in both N400 and BOLD change beyond the condition-level BOLD change difference measured in traditional fMRI analyses. Participants read sentences in which semantic unification load was parametrically manipulated by varying cloze probability. Separately, ERP and fMRI results replicated previous findings, in that semantic unification load parametrically modulated the amplitude of N400 and cortical activation. Integrated EEG-fMRI analyses revealed a different pattern in which functional activity in the left IFG and bilateral supramarginal gyrus (SMG) was associated with N400 amplitude, with the left IFG activation and bilateral SMG activation being selective to the condition-level and trial-level of semantic unification load, respectively. By employing the EEG-fMRI integrated analyses, this study among the first sheds light on how to integrate trial-level variation in language comprehension.
LINK