The aim of this systematic review was to provide an overview of the effectiveness of fundamental movement skill interventions in young children (2–5 years) and to identify elements that determine the effectiveness of these interventions. A systematic literature search was conducted in four electronic databases (PubMed, Academic Search Complete, Education Resources Information Centre and SPORTDiscus). First, intervention-related data (e.g., intervention length, volume, focus, and content) were extracted. Next, the methodological quality and risk of bias of the selected studies were evaluated using a 10-item checklist. Sixteen studies (13 randomised controlled trials and 3 controlled trials) met the inclusion criteria of which 9 had a high methodological quality. Fourteen studies reported statistically significant intervention effects, ranging from small negative to very strong positive effects. Four studies executed a retention test of which two showed positive effects. Elements that influence the effectiveness are: incorporating all fundamental movement skills in the intervention with a variety of activities; combining deliberate practice and deliberate play; the intervention length; the intervention volume and; providing a training programme with coaching during the intervention for the professional involved in delivering the intervention. However more studies containing retention tests are needed.
DOCUMENT
The main aim of this study was to determine the agreement in classification between the modified KörperKoordinations Test für Kinder (KTK3+) and the Athletic Skills Track (AST) for measuring fundamental movement skill levels (FMS) in 6- to 12-year old children. 3,107 Dutch children (of which 1,625 are girls) between 6 and 12 years of age (9.1 ± 1.8 years) were tested with the KTK3+ and the AST. The KTK3+ consists of three items from the KTK and the Faber hand-eye coordination test. Raw scores from each subtest were transformed into percentile scores based on all the data of each grade. The AST is an obstacle course consisting of 5 (grades 3 till 5, 6–9 years) or 7 (grades 6 till 8, 9–12 years) concatenated FMS that should be performed as quickly as possible. The outcome measure is the time needed to complete the track. A significant bivariate Pearson correlation coefficient of 0.51 was found between the percentile sum score of the KTK3+ and the time to complete the AST, indicating that both tests measure a similar construct to some extent. Based on their scores, children were classified into one of five categories: <5, 5–15, 16–85, 86–95 or >95%. Cross tabs revealed an agreement of 58.8% with a Kappa value of 0.15 between both tests. Less than 1% of the children were classified more than two categories higher or lower. The moderate correlation between the KTK3+ and the AST and the low classification agreement into five categories of FMS stress the importance to further investigate the test choice and the measurement properties (i.e., validity and reliability) of both tools. PE teachers needs to be aware of the context in which the test will be conducted, know which construct of motor competence they want to measure and know what the purpose of testing is (e.g., screening or monitoring). Based on these considerations, the most appropriate assessment tool can be chosen.
MULTIFILE
The main aim of this study was to evaluate a new combination of test items on its practical use as a tool for determining the fundamental movement skills performance in 6- to 10-year old primary school children. This combination of tests should cover the different aspects of fundamental movement skills (i.e., locomotion, balance and object control), measure performance levels within the broad spectrum of this age range in both boys and girls and be able to detect the existing performance differences between ages. For this purpose, 1121 primary school children (6–10 years) were assessed during their regular PE class using three test items of the Korper Köordinations Test für Kinder (KTK-3), i.e., walking backwards (WB), moving sideways (MS), jumping sideways (JS), and an eye hand coordination test item (EHC). Univariate General Linear Model analyses were used to evaluate main and interaction effects of sex and age on the test outcomes. Pearson 's correlation coefficients were calculated to confirm the different constructs measured by the four test items. Moreover, in line with previous studies the raw scores were converted into movement quotients (i.e., MQKTK−3 and MQKTK−3+EHC) to classify the children 's performance level. Accordingly, percentage of agreement and Cohen 's kappa between both classifications was determined to gain insight in the influence of the addition of the EHC to the KTK-3. Significant effects for sex and age were found. Girls outperformed boys on WB and boys outperformed girls on EHC (P < 0.05). On all test items children of a certain age group scored better than their 1-year younger peers, except at WB between 10- and the 8- and 9-year olds and at MS and JS between 10-year olds and 9-year olds. Moderate positive associations between the test items were found (P < 0.05). An 80.8% agreement of classification of children was found based on the MQKTK−3 or the MQKTK−3+EHC [Cohen 's kappa 0.59 (P < 0.001)]. Consequently, The KTK-3+EHC appears to adequately cover different aspects of the fundamental movement skills. It provides practitioners a tool that can objectively assess the broad performance spectrum within young children in applied settings, which better meets children 's individual developmental needs. https://doi.org/10.3389/feduc.2018.00075
MULTIFILE