Gedragsveranderende gezondheidscommunicatie is voor veel communicatieprofessionals een uitdaging. Ontwikkelingen op het gebied van interactieve media kunnen hierbij een doorslaggevende rol spelen. De gezondheidsprofessional krijgt hierdoor nieuw gereedschap in handen. In dit artikel wordt uiteengezet hoe interactieve media strategisch kunnen worden ingezet ten einde de effectiviteit te vergroten van een drietal belangrijke ommunicatiestrategieën: inhaken op het kritieke moment, voelbaar maken van sociale druk en afstemming op het individu.
Polycyclic aromatic hydrocarbons (PAHs) are a group of more than hundred compounds that are ubiquitous in our environment. Some of these PAHs are known to be carcinogenic, mutagenic and teratogenic. PAHs have been detected in dried herbs that were cultured in The Netherlands as well as in other European countries above the maximum levels in dried herbs set by the EU (EU, 2015) for benzo(a)pyrene and the sum of the following four PAHs benzo(a)pyrene, benzo[a]anthracene, benzo[b]fluoranteen and chrysene. The origin of these PAHs in herbs is unknown. VNK cultivates, harvests and dries herbs including valerian and would like to identify the source of PAHs to comply to the EU limits for PAHs in herbs. The goal of the present study was to identify the source of PAHs found in valerian root, and to identify possible measures to reduce the concentration of PAHs in valerian root.
MULTIFILE
The aim of the study was to evaluate whether multiple sclerosis (MS) is associated with risk of cataract or glaucoma. We conducted a population-based cohort study utilizing the UK General Practice Research Database (1987–2009) linked to the national hospital registry of England (1997–2008). Incident MS patients (5576 cases) were identified and each was matched to six patients without MS (controls) by age, gender, and practice. Cox proportional hazard models were used to estimate hazard ratios (HRs) of incident cataract and glaucoma in MS. Time-dependent adjustments were made for age, history of diseases and drug use.
Paper sludge contains papermaking mineral additives and fibers, which could be reused or recycled, thus enhancing the circularity. One of the promising technologies is the fast pyrolysis of paper sludge, which is capable of recovering > 99 wt.% of the fine minerals in the paper sludge and also affording a bio-liquid. The fine minerals (e.g., ‘circular’ CaCO3) can be reused as filler in consumer products thereby reducing the required primary resources. However, the bio-liquid has a lower quality compared to fossil fuels, and only a limited application, e.g., for heat generation, has been applied. This could be significantly improved by catalytic upgrading of the fast pyrolysis vapor, known as an ex-situ catalytic pyrolysis approach. We have recently found that a high-quality bio-oil (mainly ‘bio-based’ paraffins and low-molecular-weight aromatics, carbon yield of 21%, and HHV of 41.1 MJ kg-1) was produced (Chem. Eng. J., 420 (2021), 129714). Nevertheless, catalyst deactivation occurred after a few hours’ of reaction. As such, catalyst stability and regenerability are of research interest and also of high relevance for industrial implementation. This project aims to study the potential of the add-on catalytic upgrading step to the industrial fast pyrolysis of paper sludge process. One important performance metric for sustainable catalysis in the industry is the level of catalyst consumption (kgcat tprod-1) for catalytic pyrolysis of paper sludge. Another important research topic is to establish the correlation between yield and selectivity of the bio-chemicals and the catalyst characteristics. For this, different types of catalysts (e.g., FCC-type E-Cat) will be tested and several reaction-regeneration cycles will be performed. These studies will determine under which conditions catalytic fast pyrolysis of paper sludge is technically and economically viable.