BACKGROUND: Mobility is a key determinant and outcome of healthy ageing but its definition, conceptual framework and underlying constructs within the physical domain may need clarification for data comparison and sharing in ageing research. This study aimed to (1) review definitions and conceptual frameworks of mobility, (2) explore agreement on the definition of mobility, conceptual frameworks, constructs and measures of mobility, and (3) define, classify and identify constructs.METHODS: A three-step approach was adopted: a literature review and two rounds of expert questionnaires (n = 64, n = 31, respectively). Agreement on statements was assessed using a five-point Likert scale; the answer options 'strongly agree' or 'agree' were combined. The percentage of respondents was subsequently used to classify agreements for each statement as: strong (≥ 80%), moderate (≥ 70% and < 80%) and low (< 70%).RESULTS: A variety of definitions of mobility, conceptual frameworks and constructs were found in the literature and among respondents. Strong agreement was found on defining mobility as the ability to move, including the use of assistive devices. Multiple constructs and measures were identified, but low agreements and variability were found on definitions, classifications and identification of constructs. Strong agreements were found on defining physical capacity (what a person is maximally capable of, 'can do') and performance (what a person actually does in their daily life, 'do') as key constructs of mobility.CONCLUSION: Agreements on definitions of mobility, physical capacity and performance were found, but constructs of mobility need to be further identified, defined and classified appropriately. Clear terminology and definitions are essential to facilitate communication and interpretation in operationalising the physical domain of mobility as a prerequisite for standardisation of mobility measures.
Laboratory study using a repeated measures design. The aim of this study was to determine if ankle proprioception is targeted in exercises on unstable surfaces. Lateral ankle sprain (LAS) has recurrence rates over 70%, which are believed to be due to a reduced accuracy of proprioceptive signals from the ankle. Proprioceptive exercises in rehabilitation of LAS mostly consist of balancing activities on an unstable surface. The methods include 100 healthy adults stood barefoot on a solid surface and a foam pad over a force plate, with occluded vision. Mechanical vibration was used to stimulate proprioceptive output of muscle spindles of triceps surae and lumbar paraspinal musculature. Each trial lasted for 60 s; vibration was applied from the 15th till the 30th second. Changes in mean velocity and mean position of the center of pressure (CoP) as a result of muscle vibration were calculated. Results show that on foam, the effect of triceps surae vibration on mean CoP velocity was significantly smaller than on a solid surface, while for paraspinal musculature vibration the effect was bigger on foam than on solid surface. Similar effects were seen for mean CoP displacement as outcome. Exercises on unstable surfaces appear not to target peripheral ankle proprioception. Exercises on an unstable surface may challenge the capacity of the central nervous system to shift the weighting of sources of proprioceptive signals on balance.
LINK
ObjectiveThis systematic review aims to reevaluate the role of minerals on muscle mass, muscle strength, physical performance, and the prevalence of sarcopenia in community-dwelling and institutionalized older adults.DesignSystematic review.Setting and ParticipantsIn March 2022, a systematic search was performed in PubMed, Scopus, and Web of Sciences using predefined search terms. Original studies on dietary mineral intake or mineral serum blood concentrations on muscle mass, muscle strength, and physical performance or the prevalence of sarcopenia in older adults (average age ≥65 years) were included.MethodsEligibility screening and data extraction was performed by 2 independent reviewers. Quality assessment was performed with the Effective Public Health Practice Project (EPHPP) Quality Assessment Tool for Quantitative Studies. Risk of bias was evaluated using the Risk Of Bias In Non-randomized Studies-of Exposure (ROBINS-E) tool.ResultsFrom the 15,622 identified articles, a total of 45 studies were included in the review, mainly being cross-sectional and observational studies. Moderate quality of evidence showed that selenium (n = 8) and magnesium (n = 7) were significantly associated with muscle mass, strength, and physical performance as well as the prevalence of sarcopenia. For calcium and zinc, no association could be found. For potassium, iron, sodium, and phosphorus, the association with sarcopenic outcomes remains unclear as not enough studies could be included or were nonconclusive (low quality of evidence).Conclusions and ImplicationsThis systematic review shows a potential role for selenium and magnesium on the prevention and treatment of sarcopenia in older adults. More randomized controlled trials are warranted to determine the impact of minerals on sarcopenia in older adults.
MULTIFILE