Aim. Although cultural dimensions theory is a topical strand of quantitative cultural research, few intercultural simulation games use it. We present the design and review of the application of OASISTAN, an intercultural role-playing simulation game that is specifically based on cultural dimensions theory. Method. OASISTAN was first designed in 1999 for use in Master’s courses on cross-cultural management at Delft University of Technology in the Netherlands, attracting 20-23 year old students with a Bachelor degree in engineering and from various cultural backgrounds. Since its first design the game has been played approximately 45 times at Delft University of Technology in the Netherlands and three times at Harbin Institute of Technology in China in the years 2006-2008. We reviewed their experiences designing and facilitating OASISTAN since 1999. Results. The game has a no-tech role-play design and revolves around the geopolitically complex region of the Caspian Sea, specifically the fictional country of ‘Oasistan’. The game consists of students forming small teams of Oasistani, Western and non-Western public/private actors collaborating with each other to try and reach the common goal of oil exploration and production in this country. In total 15-30 students were involved. We found that OASISTAN allowed its players not only to intensely experience the difficulty and awkwardness of being confronted with cultural differences, but also to interpret and understand these differences through cultural dimensions. Students who played OASISTAN identified ten out of the 12 dimensions by Maleki and De Jong. The two dimensions that students were not able to identify are uncertainty avoidance and collaborativeness. Conclusion. OASISTAN shows how a game design field (i.e., intercultural simulation gaming) can be reinvigorated in light of new or updated scientific theories pertaining to the field’s subject matter (i.e., cultural dimensions). Several opportunities for future research are identified.
Video game designers iteratively improve player experience by play testing game software and adjusting its design. Deciding how to improve gameplay is difficult and time-consuming because designers lack an effective means for exploring decision alternatives and modifying a game’s mechanics. We aim to improve designer productivity and game quality by providing tools that speed-up the game design process. In particular, we wish to learn how patterns en- coding common game design knowledge can help to improve design tools. Micro-Machinations (MM) is a language and software library that enables game designers to modify a game’s mechanics at run-time. We propose a pattern-based approach for leveraging high-level design knowledge and facilitating the game design process with a game design assistant. We present the Mechanics Pattern Language (MPL) for encoding common MM structures and design intent, and a Mechanics Design Assistant (MeDeA) for analyzing, explaining and understanding existing mechanics, and generating, filtering, exploring and applying design alternatives for modifying mechanics. We implement MPL and MeDeA using the meta-programming language Rascal, and evaluate them by modifying the mechanics of a prototype of Johnny Jetstream, a 2D shooter developed at IC3D Media.
The objective of this study was to compose an objective and detailed notational analysis system for 3 vs. 2GK smallsided soccer games, in which three roles are examined: attacker with ball, attacker without ball and defender. The actions and the outcome of the actions were registered for each player and in each role. Players earn points for each action and outcome according to an a priori determined scheme. Performance scores for each role are calculated as the average number of points a participant earns per trial. This notation system was tested on 19 highly talented female soccer players and validity and reliability of the system were determined. In addition, practical applications were discussed and the most important items of the notation system were determined and using only these items, a simplified notation system was proposed. The notation system has high ecological validity and can discriminate the high and low categorized players, but further development is necessary to increase the reliability of the system.
Electronic Sports (esports) is a form of digital entertainment, referred to as "an organised and competitive approach to playing computer games". Its popularity is growing rapidly as a result of an increased prevalence of online gaming, accessibility to technology and access to elite competition.Esports teams are always looking to improve their performance, but with fast-paced interaction, it can be difficult to establish where and how performance can be improved. While qualitative methods are commonly employed and effective, their widespread use provides little differentiation among competitors and struggles with pinpointing specific issues during fast interactions. This is where recent developments in both wearable sensor technology and machine learning can offer a solution. They enable a deep dive into player reactions and strategies, offering insights that surpass traditional qualitative coaching techniquesBy combining insights from gameplay data, team communication data, physiological measurements, and visual tracking, this project aims to develop comprehensive tools that coaches and players can use to gain insight into the performance of individual players and teams, thereby aiming to improve competitive outcomes. Societal IssueAt a societal level, the project aims to revolutionize esports coaching and performance analysis, providing teams with a multi-faceted view of their gameplay. The success of this project could lead to widespread adoption of similar technologies in other competitive fields. At a scientific level, the project could be the starting point for establishing and maintaining further collaboration within the Dutch esports research domain. It will enhance the contribution from Dutch universities to esports research and foster discussions on optimizing coaching and performance analytics. In addition, the study into capturing and analysing gameplay and player data can help deepen our understanding into the intricacies and complexities of teamwork and team performance in high-paced situations/environments. Collaborating partnersTilburg University, Breda Guardians.
A world where technology is ubiquitous and embedded in our daily lives is becoming increasingly likely. To prepare our students to live and work in such a future, we propose to turn Saxion’s Epy-Drost building into a living lab environment. This will entail setting up and drafting the proper infrastructure and agreements to collect people’s location and building data (e.g. temperature, humidity) in Epy-Drost, and making the data appropriately available to student and research projects within Saxion. With regards to this project’s effect on education, we envision the proposal of several derived student projects which will provide students the opportunity to work with huge amounts of data and state-of-the-art natural interaction interfaces. Through these projects, students will acquire skills and knowledge that are necessary in the current and future labor-market, as well as get experience in working with topics of great importance now and in the near future. This is not only aligned with the Creative Media and Game Technologies (CMGT) study program’s new vision and focus on interactive technology, but also with many other education programs within Saxion. In terms of research, the candidate Postdoc will study if and how the data, together with the building’s infrastructure, can be leveraged to promote healthy behavior through playful strategies. In other words, whether we can persuade people in the building to be more physically active and engage more in social interactions through data-based gamification and building actuation. This fits very well with the Ambient Intelligence (AmI) research group’s agenda in Augmented Interaction, and CMGT’s User Experience line. Overall, this project will help spark and solidify lasting collaboration links between AmI and CMGT, give body to AmI’s new Augmented Interaction line, and increase Saxion’s level of education through the dissemination of knowledge between researchers, teachers and students.
Stedelijke regio’s streven naar een duurzame mobiliteitstransitie. Deze ambitie staat echter op gespannen voet met het hoge autobezit- en autogebruik. De stormachtige introductie van lichte elektrische voertuigen, oftewel LEVs (denk aan e-scooters, e-steps, e-(cargo)bikes en micro-cars) leek een belangrijke ‘gamechanger’ te zijn. Deze LEVs zijn namelijk klein en efficiënt, zijn nagenoeg emissievrij, bieden mogelijkheden voor het verbeteren van het voor- en natransport van het openbaar vervoer (OV) en worden bovendien door hun gebruikers als prettig ervaren tijdens het reizen.Tot op heden maken LEVs deze beloften echter onvoldoende waar. Bij de introductie, thans met name in de vorm van deelsystemen, komen diverse uitdagingen aan het licht zoals: 1) verrommeling en overlast door verkeerd gepareerde LEVs, 2) ongewenste substitutie van loop-, fiets- en OV-verplaatsingen en beperkte impact op autogebruik en 3) en zorgen over de verkeersveiligheid en beleving, met name op de (al steeds drukker wordende) fietsinfrastructuur in Nederland. Deze problemen komen mede voort uit de snelle introductie waardoor gemeenten achter de feiten aanliepen en geen gericht beleid konden voeren. Langzaam komen we nu in een periode van stabilisatie en regulering maar een doorontwikkeling naar pro-actief LEV beleid is nodig om de potentie van LEVs voor de mobiliteitstransitie te ondersteunen. Het LEVERAGE-consortium, bestaande uit sterke partners uit de triple helix, gaat daarom aan de slag met deze vraagstukken. De centrale onderzoeksvraag is:Wat is de potentie van LEVs voor de mobiliteitstransitie naar bereikbare, duurzame, verkeersveilige, inclusieve en leefbare stedelijke regio’s en hoe kan deze optimaal worden benut door een betere integratie van LEVs in het mobiliteitssysteem en het mobiliteitsbeleid en door een effectieve governance van de samenwerking tussen publieke en private stakeholders?Om deze vraag te beantwoorden heeft het consortium een ambitieus en innovatieve onderzoeksopzet gedefinieerd waarbij veel nadruk wordt gelegd op de disseminatie en exploitatie van kennis in de beleidspraktijk.Collaborative partnersProvincie Noord-Brabant, Metropoolregio Arnhem-Nijmegen, Gemeente Eindhoven, Gemeente Breda, Gemeente Arnhem, Ministerie I&W, Rijkswaterstaat, Arriva, PON, Check, Citysteps, Cenex, TIER, We-all-Wheel, Fleet investment, Goudappel, Kennisinstellingen en netwerkorganisaties, HAN, TU/e, CROW, Connekt, POLIS, SWOV.