The authors define the requirements and a conceptual model for comparative evaluation research of simulation games and serious games (SGs) in a learning context. A first operationalisation of the model was used to comparatively evaluate a suite of 14 SGs on varying topics played between 2004 and 2009 in 13 institutes of higher education in the Netherlands. The questions in this research were: what is the perceived learning effectiveness of the games and what factors explain it? How can we comparatively evaluate games for learning? Data were gathered through pre- and post-game questionnaires among 1000 students, leading to 500 useful datasets and 230 complete datasets for analysis (factor analysis, scaling, t-test and correlation analysis) to give an explorative, structural model. The findings are discussed and a number of propositions for further research are formulated. The conclusion of the analysis is that the students' motivation and attitudes towards game-based learning before the game, their actual enjoyment, their efforts during the game and the quality of the facilitator/teacher are most strongly correlated with their learning satisfaction. The degree to which the experiences during the game were translated back into the underlying theories significantly determines the students' learning satisfaction. The quality of the virtual game environment did not matter so much. The authors reflect upon the general methodology used and offer suggestions for further research and development.
Game-based learning (GBL) and gamification can improve the learning experience of students by making learning more fun, interesting, and motivating. However, integrating games in practice is challenging for many teachers as it requires competences that not necessarily are part of their teaching repertoire. Game-based pedagogy (GBP) refers to the teaching methods and learning processes involved in learning with games. Research stresses the need for adequate professional development and teacher education on GBP. However, there is a lack of empirical knowledge on effective methods to prepare pre-service and in-service teachers for using game-based learning. The aim of our research is to gain insight into the design of effective GBP learning experiences for teachers. The guiding research question was: What design elements of a course on GBL impacted in-service teachers' GBP competences and teaching practice? We investigated this question in the context of a teacher education program in the Fall 2023. We conducted an empirical study in which a course on GBL was designed, implemented, and evaluated in practice. The participants were 16 in-service secondary teachers from different disciplines in secondary education, from which 13 agreed to participate in this study, and three course leaders. We investigated participants’ and course leaders’ experiences, participants’ competences in GBP, the impact on participants’ teaching practice and the way design elements contributed to it. The data consisted of participant reflections, transcripts from participants and course leaders’ interviews and answers to a questionnaire. The data was collected and analysed using quantitative and qualitative methods between January and April 2024. Results reveal that in-service teachers’ improved their competences on GBP and increased their use of GBL in practice. Qualitative data analysis provides insight into the course's design elements and on participants’ learning process. This study contributes to GBP-education by offering a possible design solution and framework for developing effective teacher education.
Using game-based learning (GBL) has a proven potential to be an effective didactical method but it is not easy to implement in practice. Teachers find e.g. difficult to match a particular game dynamics and the curricular goals or to connect with the pedagogical models of particular games.In order to support student-teachers to develop pedagogical knowledge and skills to effectively apply this method we are developing a course about Game Based Pedagogy (GBP) for the teacher education program. This project is a Teaching Fellows Comenius (see (https://www.nro.nl/en/onderzoeksprogrammas/comeniusprogramma/toegekende-projecten).The development and implementation of the course follows a co-creation process in an interdisciplinary team involving high-school teachers, teacher educators and the Smart Education lab for Applied AI.In this workshop we present our first prototype of the course and invite the participants, through hands-on activities to explore some of the games, materials and examples that we developed. This workshop is intended for high school teachers, teacher educators and anyone who is interested in integrating Game-Based Pedagogy into practice.
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.
The objective of DIGIREAL-XL is to build a Research, Development & Innovation (RD&I) Center (SPRONG GROUP, level 4) on Digital Realities (DR) for Societal-Economic Impact. DR are intelligent, interactive, and immersive digital environments that seamlessly integrate Data, Artificial Intelligence/Machine Learning, Modelling-Simulation, and Visualization by using Game and Media Technologies (Game platforms/VR/AR/MR). Examples of these DR disruptive innovations can be seen in many domains, such as in the entertainment and service industries (Digital Humans); in the entertainment, leisure, learning, and culture domain (Virtual Museums and Music festivals) and within the decision making and spatial planning domain (Digital Twins). There are many well-recognized innovations in each of the enabling technologies (Data, AI,V/AR). However, DIGIREAL-XL goes beyond these disconnected state-of-the-art developments and technologies in its focus on DR as an integrated socio-technical concept. This requires pre-commercial, interdisciplinary RD&I, in cross-sectoral and inter-organizational networks. There is a need for integrating theories, methodologies, smart tools, and cross-disciplinary field labs for the effective and efficient design and production of DR. In doing so, DIGIREAL-XL addresses the challenges formulated under the KIA-Enabling Technologies / Key Methodologies for sectoral and societal transformation. BUas (lead partner) and FONTYS built a SPRONG group level 4 based on four pillars: RD&I-Program, Field Labs, Lab-Infrastructure, and Organizational Excellence Program. This provides a solid foundation to initiate and execute challenging, externally funded RD&I projects with partners in SPRONG stage one ('21-'25) and beyond (until' 29). DIGIREAL-XL is organized in a coherent set of Work Packages with clear objectives, tasks, deliverables, and milestones. The SPRONG group is well-positioned within the emerging MINDLABS Interactive Technologies eco-system and strengthens the regional (North-Brabant) digitalization agenda. Field labs on DR work with support and co-funding by many network organizations such as Digishape and Chronosphere and public, private, and societal organizations.
The objective of DIGIREAL-XL is to build a Research, Development & Innovation (RD&I) Center (SPRONG GROUP, level 4) onDigital Realities (DR) for Societal-Economic Impact. DR are intelligent, interactive, and immersive digital environments thatseamlessly integrate Data, Artificial Intelligence/Machine Learning, Modelling-Simulation, and Visualization by using Gameand Media Technologies (Game platforms/VR/AR/MR). Examples of these DR disruptive innovations can be seen in manydomains, such as in the entertainment and service industries (Digital Humans); in the entertainment, leisure, learning, andculture domain (Virtual Museums and Music festivals) and within the decision making and spatial planning domain (DigitalTwins). There are many well-recognized innovations in each of the enabling technologies (Data, AI,V/AR). However, DIGIREAL-XL goes beyond these disconnected state-of-the-art developments and technologies in its focus on DR as an integrated socio-technical concept. This requires pre-commercial, interdisciplinary RD&I, in cross-sectoral andinter-organizational networks. There is a need for integrating theories, methodologies, smart tools, and cross-disciplinaryfield labs for the effective and efficient design and production of DR. In doing so, DIGIREAL-XL addresses the challengesformulated under the KIA-Enabling Technologies / Key Methodologies for sectoral and societal transformation. BUas (lead partner) and FONTYS built a SPRONG group level 4 based on four pillars: RD&I-Program, Field Labs, Lab-Infrastructure, and Organizational Excellence Program. This provides a solid foundation to initiate and execute challenging, externally funded RD&I projects with partners in SPRONG stage one ('21-'25) and beyond (until' 29). DIGIREAL-XL is organized in a coherent set of Work Packages with clear objectives, tasks, deliverables, and milestones. The SPRONG group is well-positioned within the emerging MINDLABS Interactive Technologies eco-system and strengthens the regional (North-Brabant) digitalization agenda. Field labs on DR work with support and co-funding by many network organizations such as Digishape and Chronosphere and public, private, and societal organizations