Game Mechanics is aimed at game design students and industry professionals who want to improve their understanding of how to design, build, and test the mechanics of a game. Game Mechanics will show you how to design, test, and tune the core mechanics of a game—any game, from a huge role-playing game to a casual mobile phone game to a board game. Along the way, we’ll use many examples from real games that you may know: Pac-Man, Monopoly, Civilization, StarCraft II, and others. The authors provide two features. One is a tool called Machinations that can be used to visualize and simulate game mechanics on your own computer, without writing any code or using a spreadsheet. The other is a design pattern library, including the deep structures of game economies that generate challenge and many kinds of feedback loops.
DOCUMENT
An important step in the design of an effective educational game is the formulation of the to-be-achieved learning goals. The learning goals help shape the content and the flow of the entire game, i.e. they provide the basis for choosing the game’s core (learning) mechanics. A mistake in the formulation of the learning goals or the resulting choice in game mechanics can have large consequences, as the game may not lead to the intended effects. At the moment, there are many different methods for determining the learning goals; they may be derived by a domain expert, based on large collections of real-life data, or, alternatively, not be based on anything in particular. Methods for determining the right game mechanics range from rigid taxonomies, loose brainstorming sessions, to, again, not any method in particular. We believe that for the field of educational game design to mature, there is a need for a more uniform approach to establishing the learning goals and translating them into relevant and effective game activities. This paper explores two existing, non-game design specific, methods to help determine learning goals and the subsequent core mechanics: the first is through a Cognitive Task Analysis (CTA), which can be used to analyse and formalize the problem and the knowledge, skills, attitudes that it is comprised of, and the second is through the Four Components Instructional Design (4C-ID), which can be used to determine how the task should be integrated into an educational learning environment. Our goal is to see whether these two methods provide the uniform approach we need. This paper gives an overview of our experiences with these methods and provides guidelines for other researchers on how these methods could be used in the educational game design process.
DOCUMENT
In order for techniques from Model Driven Engineering to be accepted at large by the game industry, it is critical that the effectiveness and efficiency of these techniques are proven for game development. There is no lack of game design models, but there is no model that has surfaced as an industry standard. Game designers are often reluctant to work with models: they argue these models do not help them design games and actually restrict their creativity. At the same time, the flexibility that model driven engineering allows seems a good fit for the fluidity of the game design process, while clearly defined, generic models can be used to develop automated design tools that increase the development’s efficiency.
DOCUMENT
Deze publicatie richt zich vooral op het concept Design Based Research,gezien vanuit het perspectief van de bijna 40 lectoren die de hogeschool rijk is. Dit lectoratenoverzicht kan worden beschouwd als een atlas of reisgids waarmee de lezer een route kan afleggen langs de verschillende lectoraten. De lectoraten die actief zijn op het gebied van de Service Economy worden beschreven in hoofdstuk 2. De lectoraten die actief zijn op het gebied van Vitale Regio worden beschreven in hoofdstuk 3. De lectoraten die actief zijn op het gebied van Smart Sustainable Industries worden beschreven in hoofdstuk 4. De lectoraten die actief zijn op het gebied van de hogeschoolbrede thema’s Design Based Education en Research worden beschreven in hoofdstuk 5. Tenslotte wordt er in hoofdstuk 6 een eerste aanzet gedaan om één of meer verbindende thema’s of werkwijzen te ontdekken in de aanpak van de verschillende lectoraten. Het is niet de bedoeling van deze publicatie om een definitief antwoord te geven op de vraag wat NHL Stenden precies bedoelt met het concept Design Based Research. Het doel van deze publicatie is wel om een indruk te krijgen van wat er allemaal gebeurt binnnen de lectoraten van NHL Stenden, en om nieuwsgierig te worden naar meer.
DOCUMENT
Dit proefschrift presenteert twee theoretische kaders voor het ontwerpen van games en beschrijft hoe game designers deze kunnen inzetten om het game ontwerpproces te stroomlijnen. Er bestaan op dit moment meerdere ontwerptheorie¨en voor games, maar geen enkele kan rekenen op een breed draagvlak binnen de game industrie. Vooral academische ontwerptheorie¨en hebben regelmatig een slechte reputatie. Het eerste kader dat game designers inzicht biedt in spelregels en hun werking heet Machinations en maakt gebruik van dynamische, interactieve diagrammen. Het tweede theoretische kader van dit proefschrift, Mission/Space, richt zich op level-ontwerp en spelmechanismen die de voortgang van een speler bepalen. In tegenstelling tot bestaande modellen voor level-ontwerp, bouwt Mission/Space voort op het idee dat er in een level twee verschillende structuren bestaan. Mission-diagrammen worden gebruikt om de structuur van taken en uitdagingen voor de speler te formaliseren, terwijl space-diagrammen de ruimtelijke constructie formaliseren. Beide constructies zijn aan elkaar gerelateerd, maar zijn niet hetzelfde. De verschillende wijzen waarop missies geprojecteerd kunnen worden op een bepaalde ruimte speelt uiteindelijk een belangrijke rol in de totstandkoming van de spelervaring.
DOCUMENT
Design and development practitioners such as those in game development often have difficulty comprehending and adhering to the European General Data Protection Regulation (GDPR), especially when designing in a private sensitive way. Inadequate understanding of how to apply the GDPR in the game development process can lead to one of two consequences: 1. inadvertently violating the GDPR with sizeable fines as potential penalties; or 2. avoiding the use of user data entirely. In this paper, we present our work on designing and evaluating the “GDPR Pitstop tool”, a gamified questionnaire developed to empower game developers and designers to increase legal awareness of GDPR laws in a relatable and accessible manner. The GDPR Pitstop tool was developed with a user-centered approach and in close contact with stakeholders, including practitioners from game development, legal experts and communication and design experts. Three design choices worked for this target group: 1. Careful crafting of the language of the questions; 2. a flexible structure; and 3. a playful design. By combining these three elements into the GDPR Pitstop tool, GDPR awareness within the gaming industry can be improved upon and game developers and designers can be empowered to use user data in a GDPR compliant manner. Additionally, this approach can be scaled to confront other tricky issues faced by design professionals such as privacy by design.
LINK
Given the considerable heterogeneity in students skills within Physica Education (PE) classes, there is a constant need for differential instruction and modification of games. In this chapter we present the game-based approach and curriculum model Game Insight (GI) and propose the 'game slope' concept. By embedding this concept in the didactical components of the GI curriculum model the PE teacher can design and teach meaningful game activities, in wich players' differing abilities and needs are met.
DOCUMENT
Design In our modern world, we are constantly confronted by challenges of a societal, ecological, organisational, strategic or cultural nature. These so-called wicked problems are difficult to define and even harder to solve, often requiring feats of collaboration. Design, Play, Change is a Design Thinking book and game created for managers, entrepreneurs, trainers, coaches, educators and students who want to develop innovative ideas for future change within and between their teams or organisations. In short, this book is the active agent that can be used to theorise, restructure and overcome challenges we face on a daily basis. Play Crafted both for experts in Design Thinking and for those just getting started, Design, Play, Change will explain the theory behind designing as well as demonstrate how to think, act, create and feel like a designer. With 40 method cards, spanning across different critical roles like the Creator, Emphatiser, Thinker and Maker, the book presents an extremely accessible and fun way of examining complex contemporary challenges with a light-hearted outlook. Regardless of what challenge needs to be overcome, this collaborative game creates a shared vision of the challenge at hand while also generating inspiring insights, fresh ideas and productive activities. Above all, Design, Play, Change is inspirational, energising and fun for you and the whole team playing along with you. At it’s core, Design, Play, Change teaches readers and players a practical way of reframing, envisioning and evaluating their challenges and ideas, addressing them like a designer would in a collaborative game format. Design, Play, Change is a game and a book and is avaliable here: https://www.bispublishers.com/design-play-change.html
DOCUMENT
© Springer International Publishing AG 2016. A serious game needs to combine a number of different aspects to help the end user in reaching the desired effects. This requires incorporating a broad range of different aspects in the design, stemming from a broad range of different fields of expertise. For designers, developers, researchers, and other stakeholders it is not straightforward how to organize the design and development process, to make sure that these aspects are properly addressed. In this chapter we will discuss a number of ways of organizing the design and development process and various models that support specific design decisions during this process, concluding with a discussion of design patterns for serious games.
DOCUMENT
The use of games as interventions in the domain of health care is of-ten paired with evaluating the effects in randomized clinical trials. The iterative design and development process of games usually also involves an evaluation phase, aimed at identifying improvements for subsequent iterations. Since game design theory and theories from associated fields provide no unified framework for designing successful interventions, interpreting evaluation results and for-mulating improvements is complicated. This case study explores an approach of monitoring design decisions and corresponding theories throughout the design and development cycle, allowing evaluation results to be attributed to design decisions. Such an approach may allow the game design and development pro-cess to iterate the game more efficiently towards use in practice.3rd European Conference on Gaming and Playful Interaction in Health Care.
DOCUMENT