This research aims to obtain more insight in the perception of fabric drape and how fabric drape can be cat-egorized With the current 3D virtual technologies to simulate garments the fashion and clothing industry can speed up work processes, improve accuracy and reduce material consumption in fit, design and sales. Although the interest in 3D technology is increasing, the implementation on a large scale emerges only slowly. At the threshold between physical and virtual fitting the fashion industry faces new challenges and demands re-quiring responses out of rule. The measurement of fabric drape started in the first half of the previous cen-tury, after the introduction of 3D garment simulation fabric drape gained interest from more researchers to obtain information for the virtual drape. Intensive research has been undertaken to define ‘fabric hand’, however, research is limited for the definition of fabric drape. Better understanding of how fabrics drape and how they can be selected based on their drape might contribute to the understanding of the virtually as-sessed material and accelerate the selection process of virtually, as well as digitally presented fabrics. For this research the drape coefficient of 13 fabrics, selected based on their drape, was measured with the Cusick drape tester. Images and videos of the fabrics draped on pedestals were presented to an expert tex-tile panel who were asked to define the fabric drape. From these definitions categories, as well as identifying key-words, were derived. During a group session the expert panel evaluated the drape categories and identi-fying key-words. In the next phase an expert user panel, familiar with the assessment of fabrics in a virtual environment, assessed the appropriateness of the categories and identifying key-words which were present-ed along with the fabric drape images and videos. Moreover, both panels judged the stiffness and amount of drape, next to that they indicated similar draping fabrics. The relation between the subjective assessment of drape and the drape coefficient was investigated. The agreement of the user panel with the drape categories defined and evaluated by the textile panel was high. Further, the agreement of the majority of the user panel with the identifying key-words was above 78%. A strong relation was found between the measured drape coefficient and the subjectively assessed stiffness and amount of drape. Additionally, the analysis of the fabrics combined by the panels based on drape simi-larity, as well as the analysis of the drape coefficients, confirms with previous research, that significantly dif-ferent fabrics can have a similar drape. Fabrics can be divided in drape categories based on the way they drape, and the identifying key-words are useful to distinguish between significantly different fabrics with similar fabric drape. Moreover, the cate-gories are related to the drape coefficient.
MULTIFILE
This investigation is undertaken based on the indicated improvements for fabric simulations, defined during the panel discussion “Driving the Uniformity of Material Measurements for Accurate Virtual Simulation” at the Product Innovation Apparel Conference (PI Apparel) in Berlin 2017, by experts from industry and academia. According to the expert panel, there is no coherency between methods used to measure the fabric properties and the simulated results of the same fabric among the different software packages. In praxis, fashion brands use different 3D software packages and need to measure a fabric with different methods to obtain the same fabric properties. In addition to the time investment, the simulated results for the same fabric vary significantly between the different software packages. The experts indicated the lack of standardization in material measurements, the lack of correlation between the data of the different measurement systems, and the lack of correlation between the simulated results of the different software packages for the same material. The contributions of the panel were followed up during the next edition of PI Apparel in the United States and resulted in the 3D Retail Coalition (RC) innovation committee to work on the indicated areas to improve the efficiency of material measurements. Moreover, this topic was further discussed during the PI Apparel Conference at Lago Maggiore in 2019 within the panel discussion "How Can We Collectively Achieve the Standardisation of Fabric Measurements for Digital Materials?"This paper investigates, on the one hand, the suitability of the current available measurement technologies for retrieving fabric parameters for precise virtual fabric and garment simulations. The focus is on the main properties required by the software packages—bending, shear, tensile and friction—aiming to identify and specify the most suitable methods to retrieve mechanical fabric properties and to start a standardization process for fabric measurements for virtual simulations.Seven fabric measurement methods and their output data are reviewed, namely the Kawabata Evaluation System (KES), the Fabric Assurance by Simple Testing (FAST), the Fabric Touch Tester (FTT), the CLO Fabric Kit 2.0, the Fabric Analyser by Browzwear (FAB), the Optitex Mark 10, and the cantilever principle. A set of fabrics with different mechanical behavior and physical drape has been tested with the FAB method. Other measurement methods have been discussed with expert users. In addition, fabrics have been tested with ZwickRoell’s (ZwickRoell) measuring systems applying various standard measurement methods, developed for similar materials. This publication will give for each property an overview of the different measurement methods, as well as recommendations based on their accuracy. Further, a SWOT analysis is provided. The outcome of this research can be used to pave the foundation for further work on the standardization of the fabric measurement.
LINK
The Procurement and Supply of hospital isolation gowns (IGs) pose significant challenges, including the potential for sudden increases in demand, the necessity of maintaining high-quality gowns, and the complexity of the supply process. One potential solution to these challenges is the investment in reusable IGs, which may seem financially infeasible due to their initial purchasing price. However, it can provide long-term financial and environmental benefits. In this research, a Simulation Optimization (SO) framework is utilized to model and analyze various product portfolio selection strategies, considering both financial and environmental perspectives, and to determine the optimal strategy for meeting both financial and environmental objectives. The proposed strategy is implemented to the problem based on obtained Life Cycle Assessment and market data.
DOCUMENT