Vanuit Fontys Hogescholen wordt veel onderzoek gedaan, met name door onderzoekers van de verschillende lectoraten. Vanzelfsprekend worden er binnen deze onderzoeken veel data verzameld en verwerkt. Fontys onderschrijft het belang van zorgvuldige omgang met onderzoeksdata en vraagt daarom van onderzoekers dat zij hun Research Data Management (RDM) op orde hebben. Denk hierbij aan veilige opslag en duurzame toegankelijkheid van data. Maar ook (open access) publiceren en archiveren van onderzoeksdata maken onderdeel uit van RDM. Hoe je hier als onderzoeker invulling aan geeft kan soms best een zoektocht zijn, mede doordat nog niet iedereen even bekend is met het onderwerp RDM. Met dit boek hopen we onderzoekers binnen Fontys de belangrijkste informatie te bieden die nodig is om goed invulling te geven aan Research Data Management en daarbij ook te wijzen op de ondersteuning die op dit gebied voorhanden is.
What you don’t know can’t hurt you: this seems to be the current approach for responding to disinformation by public regulators across the world. Nobody is able to say with any degree of certainty what is actually going on. This is in no small part because, at present, public regulators don’t have the slightest idea how disinformation actually works in practice. We believe that there are very good reasons for the current state of affairs, which stem from a lack of verifiable data available to public institutions. If an election board or a media regulator wants to know what types of digital content are being shared in their jurisdiction, they have no effective mechanisms for finding this data or ensuring its veracity. While there are many other reasons why governments would want access to this kind of data, the phenomenon of disinformation provides a particularly salient example of the consequences of a lack of access to this data for ensuring free and fair elections and informed democratic participation. This chapter will provide an overview of the main aspects of the problems associated with basing public regulatory decisions on unverified data, before sketching out some ideas of what a solution might look like. In order to do this, the chapter develops the concept of auditing intermediaries. After discussing which problems the concept of auditing intermediaries is designed to solve, it then discusses some of the main challenges associated with access to data, potential misuse of intermediaries, and the general lack of standards for the provision of data by large online platforms. In conclusion, the chapter suggests that there is an urgent need for an auditing mechanism to ensure the accuracy of transparency data provided by large online platform providers about the content on their services. Transparency data that have been audited would be considered verified data in this context. Without such a transparency verification mechanism, existing public debate is based merely on a whim, and digital dominance is likely to only become more pronounced.
MULTIFILE
This matrix is generic. It is a tool for data stewards or other research supporters to assist researchers in taking appropriate measures for the safe use and protection of data about people in scientific research. It is a template that you can adjust to the context of your own institution, faculty and / or department by taking into consideration your setting’s own policies, guidelines, infrastructure and technical solutions. In this way you can more effectively determine the appropriate technical and organizational measures to protect the data based on the context of the research and the risks associated with the data.
This project addresses the fundamental societal problem that encryption as a technique is available since decades, but has never been widely adopted, mostly because it is too difficult or cumbersome to use for the public at large. PGP illustrates this point well: it is difficult to set-up and use, mainly because of challenges in cryptographic key management. At the same time, the need for encryption has only been growing over the years, and has become an urgent problem with stringent requirements – for instance for electronic communication between doctors and patients – in the General Data Protection Regulation (GDPR) and with systematic mass surveillance activities of internationally operating intelligence agencies. The interdisciplinary project "Encryption for all" addresses this fundamental problem via a combination of cryptographic design and user experience design. On the cryptographic side it develops identity-based and attribute-based encryption on top of the attribute-based infrastructure provided by the existing IRMA-identity platform. Identity-based encryption (IBE) is a scientifically well-established technique, which addresses the key management problem in an elegant manner, but IBE has found limited application so far. In this project it will be developed to a practically usable level, exploiting the existing IRMA platform for identification and retrieval of private keys. Attribute-based encryption (ABE) has not reached the same level of maturity yet as IBE, and will be a topic of further research in this project, since it opens up attractive new applications: like a teacher encrypting for her students only, or a company encrypting for all employees with a certain role in the company. On the user experience design side, efforts will be focused on making these encryption techniques really usable (i.e., easy to use, effective, efficient, error resistant) for everyone (e.g., also for people with disabilities or limited digital skills). To do so, an iterative, human-centred and inclusive design approach will be adopted. On a fundamental level, scientific questions will be addressed, such as how to promote the use of security and privacy-enhancing technologies through design, and whether and how usability and accessibility affect the acceptance and use of encryption tools. Here, theories of nudging and boosting and the unified theory of technology acceptance and use (known as UTAUT) will serve as a theoretical basis. On a more applied level, standards like ISO 9241-11 on usability and ISO 9241-220 on the human-centred design process will serve as a guideline. Amongst others, interface designs will be developed and focus groups, participatory design sessions, expert reviews and usability evaluations with potential users of various ages and backgrounds will be conducted, in a user experience and observation laboratory available at HAN University of Applied Sciences. In addition to meeting usability goals, ensuring that the developed encryption techniques also meet national and international accessibility standards will be a particular point of focus. With respect to usability and accessibility, the project will build on the (limited) usability design experiences with the mobile IRMA application.