This report describes the creation and use of a database for energy storage technologies which was developed in conjunction with Netbeheer Nederland and the Hanze University of Applied Sciences. This database can be used to make comparisons between a selection of storage technologies and will provide a method for ranking energy storage technology suitability based on the desired application requirements. In addition, this document describes the creation of the energy storage label which contains detailed characteristics for specific storage systems. The layout of the storage labels enables the analysis of different storage technologies in a comprehensive, understandable and comparative manner. A sampling of storage technology labels are stored in an excel spreadsheet and are also compiled in Appendix I of this report; the storage technologies represented here were found to be well suited to enable flexibility in energy supply and to potentially provide support for renewable energy integration [37] [36]. The data in the labels is presented on a series of graphs to allow comparisons of the technologies. Finally, the use and limitations of energy storage technologies are discussed. The results of this research can be used to support the Dutch enewable Energy Transition by providing important information regarding energy storage in both technically detailed and general terms. This information can be useful for energy market parties in order to analyze the role of storage in future energy scenarios and to develop appropriate strategies to ensure energy supply.
MULTIFILE
It is assumed by the projects demonstrating Positive Energy District (PED) concepts in cities across Europe that citizens should want and need to be involved in the development of new energy concepts, such as PEDs for these concepts to be deployed successfully. Six different PED research and innovation projects are investigating the types and expectations of citizen engagement. They evaluate the impact of energy citizenship on the success of PED deployment across Europe.
The future energy system could benefit from the integration of the independent gas, heat and electricity infrastructures. In addition to an increase in exergy efficiency, such a Hybrid Energy Network (HEN) could support the increase of intermittent renewable energy sources by offering increased operational flexibility. Nowadays, the expectations on Natural Gas resources forecast an increase in the application of Liquefied Natural Gas (LNG), as a means of storage and transportation, which has a high exergy value due to the low temperature. Therefore, we analysed the integration of a decentralized LNG regasification with a CHP (Waste-to-Energy) plant, to determine whether the integration could offer additional operational flexibility for the future energy network with intermittent renewable energy sources, under optimized exergy efficient conditions. We compared the independent system with two systems integrated by means of 1) Organic Rankine Cycle and 2) Stirling Engine using the cold of the LNG, that we analysed using a simplified deterministic model based on the energy hub concept. We use the hourly measured electricity and heat demand patterns for 200 households with 35% of the households producing electricity from PV according to a typical measured solar insolation pattern in The Netherlands. We found that for both systems the decentralized LNG regasification integrated with the W2E plant affects the imbalance of the system for electricity and heat, due to the additional redundant paths to produced electricity. The integration of the systems offers additional operational flexibility depending on the means of integration and its availability to produce additional energy carriers. For our future work, we will extend the model, taking into account the variability and randomness in the different parameters, which may cause significant changes in the performance and reliability of the model.
298 woorden: In the upcoming years the whole concept of mobility will radically change. Decentralization of energy generation, urbanization, digitalization of processes, electrification of vehicles and shared mobility are only some trends which have a strong influence on future mobility. Furthermore, due to the shift towards renewable energy production, the public and the private sector are required to develop new infrastructures, new policies as well as new business models. There are countless opportunities for innovative business models emerging. Companies in this field – such as charging solution provider, project management or consulting companies that are part of this project, Heliox and Over Morgen respectively – are challenged with countless possibilities and increasing complexity. How to overcome this problem? Academic research proposes a promising approach, namely the use of business model patterns for business model innovation. In short, these business model patterns are descriptions of proven practical solutions to common business model challenges. An example for a general pattern would be the business model pattern “Consumables”. It describes how to lock in a customer into an ecosystem by using a subsidized basic product and complement it with overpriced consumables. This pattern works really well and has been used by many companies (e.g. Senseo, HP, or Gillette). To support the business model innovation process of Heliox and Over Morgen as well as companies in the electric mobility space in general, we propose to systematically consolidate and develop business model patterns for the electric mobility sector and to create a database. Electric mobility patterns could not only foster creativity in the business model innovation process but also enhance collaboration in teams. By having a classified list of business model pattern for electric mobility, practitioners are equipped which a heuristic tool to create, extend and revise business models for the future.
Met de opkomst van digitale diensten en de impact van digitale technologie is het vraagstuk van privacy hoog op de maatschappelijke agenda beland. Burgers gebruiken steeds vaker apps en andere online services, met als keerzijde dat we steeds meer informatie over onszelf moeten delen om optimaal gebruik te kunnen maken van deze faciliteiten. Dit kan leiden tot schending van onze privacy. Ook voor de meeste (mkb-)bedrijven is het lastig om inzicht te krijgen in de privacy implicaties van hun online services en in de privacy-eisen om deze implicaties te verzachten. Het privacyvraagstuk is voor deze doelgroepen grijpbaar te maken door de privacy-eisen waar online diensten aan moeten voldoen op een beknopte, overzichtelijke en duidelijke manier te communiceren. Privacy labels, in navolging van energielabels en voedingslabels, zijn hiervoor een veelbelovende methode. Binnen het, door NWO gefinancierde, SERIOUS project is een prototype ontwikkeld om privacy-eisen te visualiseren middels een multidimensionaal privacy label (Barth, Ionita en Hartel, 2020). Op basis van een vragenlijst met betrekking op datacollectie, dataverwerking en datadisseminatie kan de mate van privacy borging en bescherming worden vastgesteld. Het huidige prototype van dit privacy label is generiek. Echter is het mogelijk dat bepaalde elementen van privacy in de praktijk binnen sommige domeinen veel zwaarder wegen dan binnen anderen. Kenniscentrum Creating 010 onderzoekt, naar aanleiding van de vraag vanuit de samenwerkingspartijen van het SERIOUS project, binnen dit project hoe het SERIOUS prototype kan worden doorontwikkeld naar een volwaardig privacy label. Hierbij wordt nagegaan of en hoe het prototype in en voor verschillende sectoren werkt, deze zijn: retail, media en cultuur. Het doel van dit project is om middels een haalbaarheidsstudie de richtlijnen voor een domein-specifiek label te achterhalen en op te stellen die dienen als uitgangspunt voor een vervolgproject voor een domein-specifieke privacy tool.
While the creation of an energy deficit (ED) is required for weight loss, it is well documented that actual weight loss is generally lower than what expected based on the initially imposed ED, a result of adaptive mechanisms that are oppose to initial ED to result in energy balance at a lower set-point. In addition to leading to plateauing weight loss, these adaptive responses have also been implicated in weight regain and weight cycling (add consequences). Adaptions occur both on the intake side, leading to a hyperphagic state in which food intake is favored (elevated levels of hunger, appetite, cravings etc.), as well as on the expenditure side, as adaptive thermogenesis reduces energy expenditure through compensatory reductions in resting metabolic rate (RMR), non-exercise activity expenditure (NEAT) and the thermic effect of food (TEF). Two strategies that have been utilized to improve weight loss outcomes include increasing dietary protein content and increasing energy flux during weight loss. Preliminary data from our group and others demonstrate that both approaches - especially when combined - have the capacity to reduce the hyperphagic response and attenuate reductions in energy expenditure, thereby minimizing the adaptive mechanisms implicated in plateauing weight loss, weight regain and weight cycling. Past research has largely focused on one specific component of energy balance (e.g. hunger or RMR) rather than assessing the impact of these strategies on all components of energy balance. Given that all components of energy balance are strongly connected with each other and therefore can potentially negate beneficial impacts on one specific component, the primary objective of this application is to use a comprehensive approach that integrates all components of energy balance to quantify the changes in response to a high protein and high energy flux, alone and in combination, during weight loss (Fig 1). Our central hypothesis is that a combination of high protein intake and high energy flux will be most effective at minimizing both metabolic and behavioral adaptations in several components of energy balance such that the hyperphagic state and adaptive thermogenesis are attenuated to lead to superior weight loss results and long-term weight maintenance.