ObjectiveThis systematic review aims to reevaluate the role of minerals on muscle mass, muscle strength, physical performance, and the prevalence of sarcopenia in community-dwelling and institutionalized older adults.DesignSystematic review.Setting and ParticipantsIn March 2022, a systematic search was performed in PubMed, Scopus, and Web of Sciences using predefined search terms. Original studies on dietary mineral intake or mineral serum blood concentrations on muscle mass, muscle strength, and physical performance or the prevalence of sarcopenia in older adults (average age ≥65 years) were included.MethodsEligibility screening and data extraction was performed by 2 independent reviewers. Quality assessment was performed with the Effective Public Health Practice Project (EPHPP) Quality Assessment Tool for Quantitative Studies. Risk of bias was evaluated using the Risk Of Bias In Non-randomized Studies-of Exposure (ROBINS-E) tool.ResultsFrom the 15,622 identified articles, a total of 45 studies were included in the review, mainly being cross-sectional and observational studies. Moderate quality of evidence showed that selenium (n = 8) and magnesium (n = 7) were significantly associated with muscle mass, strength, and physical performance as well as the prevalence of sarcopenia. For calcium and zinc, no association could be found. For potassium, iron, sodium, and phosphorus, the association with sarcopenic outcomes remains unclear as not enough studies could be included or were nonconclusive (low quality of evidence).Conclusions and ImplicationsThis systematic review shows a potential role for selenium and magnesium on the prevention and treatment of sarcopenia in older adults. More randomized controlled trials are warranted to determine the impact of minerals on sarcopenia in older adults.
MULTIFILE
Plasmid-mediated dissemination of antibiotic resistance among fecal Enterobacteriaceae in natural ecosystems may contribute to the persistence of antibiotic resistance genes in anthropogenically impacted environments. Plasmid transfer frequencies measured under laboratory conditions might lead to overestimation of plasmid transfer potential in natural ecosystems. This study assessed differences in the conjugative transfer of an IncP-1 (pKJK5) plasmid to three natural Escherichia coli strains carrying extended-spectrum beta-lactamases, by filter mating. Matings were performed under optimal laboratory conditions (rich LB medium and 37°C) and environmentally relevant temperatures (25, 15 and 9°C) or nutrient regimes mimicking environmental conditions and limitations (synthetic wastewater and soil extract). Under optimal nutrient conditions and temperature, two recipients yielded high transfer frequencies (5 × 10–1) while the conjugation frequency of the third strain was 1000-fold lower. Decreasing mating temperatures to psychrophilic ranges led to lower transfer frequencies, albeit all three strains conjugated under all the tested temperatures. Low nutritive media caused significant decreases in transconjugants (−3 logs for synthetic wastewater; −6 logs for soil extract), where only one of the strains was able to produce detectable transconjugants. Collectively, this study highlights that despite less-than-optimal conditions, fecal organisms may transfer plasmids in the environment, but the transfer of pKJK5 between microorganisms is limited mainly by low nutrient conditions.
MULTIFILE