The proposal aims to present the first findings of the Better Together project in the Westerpark area of Amsterdam. The project targets three urgent - and connected- urban challenges: • firstly the increasing social isolation of older migrants and people with psychiatric histories; • secondly the need of the Westerpark professionals in care and welfare to develop community-based strategies as crucial local resources for the well being of these vulnerable groups;• thirdly the implementation of the Positive Health-approach as a response to the rising costs in the socio-medical care provision
MULTIFILE
Real-time location systems (RTLS) can be implemented in aged care for monitoring persons with wandering behaviour and asset management. RTLS can help retrieve personal items and assistive technologies that when lost or misplaced may have serious financial, economic and practical implications. Various ethical questions arise during the design and implementation phases of RTLS. This study investigates the perspectives of various stakeholders on ethical questions regarding the use of RTLS for asset management in nursing homes. Three focus group sessions were conducted concerning the needs and wishes of (1) care professionals; (2) residents and their relatives; and (3) researchers and representatives of small and medium-sized enterprises (SMEs). The sessions were transcribed and analysed through a process of open, axial and selective coding. Ethical perspectives concerned the design of the system, the possibilities and functionalities of tracking, monitoring in general and the user-friendliness of the system. In addition, ethical concerns were expressed about security and responsibilities. The ethical perspectives differed per focus group. Aspects of privacy, the benefit of reduced search times, trust, responsibility, security and well-being were raised. The main focus of the carers and residents was on a reduced burden and privacy, whereas the SMEs stressed the potential for improving products and services. Original article at MDPI: https://doi.org/10.3390/info9040080
MULTIFILE
National forestry Commission (SBB) and National Park De Biesbosch. Subcontractor through NRITNational parks with large flows of visitors have to manage these flows carefully. Methods of data collection and analysis can be of help to support decision making. The case of the Biesbosch National Park is used to find innovative ways to figure flows of yachts, being the most important component of water traffic, and to create a model that allows the estimation of changes in yachting patterns resulting from policy measures. Recent policies oriented at building additional waterways, nature development areas and recreational concentrations in the park to manage the demands of recreation and nature conservation offer a good opportunity to apply this model. With a geographical information system (GIS), data obtained from aerial photographs and satellite images can be analyzed. The method of space syntax is used to determine and visualize characteristics of the network of leisure routes in the park and to evaluate impacts resulting from expected changes in the network that accompany the restructuring of waterways.
The Dutch main water systems face pressing environmental, economic and societal challenges due to climatic changes and increased human pressure. There is a growing awareness that nature-based solutions (NBS) provide cost-effective solutions that simultaneously provide environmental, social and economic benefits and help building resilience. In spite of being carefully designed and tested, many projects tend to fail along the way or never get implemented in the first place, wasting resources and undermining trust and confidence of practitioners in NBS. Why do so many projects lose momentum even after a proof of concept is delivered? Usually, failure can be attributed to a combination of eroding political will, societal opposition and economic uncertainties. While ecological and geological processes are often well understood, there is almost no understanding around societal and economic processes related to NBS. Therefore, there is an urgent need to carefully evaluate the societal, economic, and ecological impacts and to identify design principles fostering societal support and economic viability of NBS. We address these critical knowledge gaps in this research proposal, using the largest river restoration project of the Netherlands, the Border Meuse (Grensmaas), as a Living Lab. With a transdisciplinary consortium, stakeholders have a key role a recipient and provider of information, where the broader public is involved through citizen science. Our research is scientifically innovative by using mixed methods, combining novel qualitative methods (e.g. continuous participatory narrative inquiry) and quantitative methods (e.g. economic choice experiments to elicit tradeoffs and risk preferences, agent-based modeling). The ultimate aim is to create an integral learning environment (workbench) as a decision support tool for NBS. The workbench gathers data, prepares and verifies data sets, to help stakeholders (companies, government agencies, NGOs) to quantify impacts and visualize tradeoffs of decisions regarding NBS.