Geospatial technologies have the potential to transform the lives of older adults by providing them with necessary tools to navigate their local communities, access services, connect with others, and access valuable information. However, the usability and accessibility of such technologies often fall short of the needs of older adults. Many existing geospatial tools are not designed with the needs and preferences of older adults in mind; this can lead to usability challenges and limit their usage. This paper explores a participatory approach in developing an inclusive geodata-collection tool that is specifically tailored to older users’ needs. The paper also highlights the importance of incorporating user-centered design principles, participatory design methods, and accessibility guidelines throughout the entire geodata-tool-development process. It also emphasizes the need for ongoing user engagement and feedback in order to ensure that the tool remains relevant and usable in the evolving digital landscape. This participatory approach has resulted in a tool that is easy to use and accessible for older adults; it is available in various languages, thus ensuring that the elderly can actively participate in the prototype’s creation and contribute to the collection of the geospatial information that reflects their lived experiences and needs.
MULTIFILE
DOCUMENT
The methodology of biomimicry design thinking is based on and builds upon the overarching patterns that all life abides by. “Cultivating cooperative relationships” within an ecosystem is one such pattern we as humans can learn from to nurture our own mutualistic and symbiotic relationships. While form and process translations from biology to design have proven accessible by students learning biomimicry, the realm of translating biological functions in a systematic approach has proven to be more difficult. This study examines how higher education students can approach the gap that many companies in transition are struggling with today; that of thinking within the closed loops of their own ecosystem, to do good without damaging the system itself. Design students should be able to assess and advise on product design choices within such systems after graduation. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter, and many obstacles are encountered by students and their professional clients when trying to implement systems thinking into their design process. While biomimicry offers guidelines and methodology, there is insufficient research on complex, systems-level problem solving that systems thinking biomimicry requires. This study looks at factors found in course exercises, through student surveys and interviews that helped (novice) professionals initiate systems thinking methods as part of their strategy. The steps found in this research show characteristics from student responses and matching educational steps which enabled them to develop their own approach to challenges in a systems thinking manner. Experiences from the 2022 cohort of the semester “Design with Nature” within the Industrial Design Engineering program at The Hague University of Applied Sciences in the Netherlands have shown that the mixing and matching of connected biological design strategies to understand integrating functions and relationships within a human system is a promising first step. Stevens LL, Whitehead C, Singhal A. Cultivating Cooperative Relationships: Identifying Learning Gaps When Teaching Students Systems Thinking Biomimicry. Biomimetics. 2022; 7(4):184. https://doi.org/10.3390/biomimetics7040184
DOCUMENT
National forestry Commission (SBB) and National Park De Biesbosch. Subcontractor through NRITNational parks with large flows of visitors have to manage these flows carefully. Methods of data collection and analysis can be of help to support decision making. The case of the Biesbosch National Park is used to find innovative ways to figure flows of yachts, being the most important component of water traffic, and to create a model that allows the estimation of changes in yachting patterns resulting from policy measures. Recent policies oriented at building additional waterways, nature development areas and recreational concentrations in the park to manage the demands of recreation and nature conservation offer a good opportunity to apply this model. With a geographical information system (GIS), data obtained from aerial photographs and satellite images can be analyzed. The method of space syntax is used to determine and visualize characteristics of the network of leisure routes in the park and to evaluate impacts resulting from expected changes in the network that accompany the restructuring of waterways.