the role of higher education in fostering young professionals’ global competence
DOCUMENT
An important contribution to the environmental impact of agro-food supply chains is related to the agricultural technology and practices used in the fields during raw material production. This problem can be framed from the point of view of the Focal Company (FC) as a raw material Green Supplier Selection Problem (GSSP). This paper describes an extension of the GSSP methodology that integrates life cycle assessment, environmental collaborations, and contract farming in order to gain social and environmental benefits. In this approach, risk and gains are shared by both parties, as well as information related to agricultural practices through which the FC can optimize global performance by deciding which suppliers to contract, capacity and which practices to use at each supplying field in order to optimize economic performance and environmental impact. The FC provides the knowledge and technology needed by the supplier to reach these objectives via a contract farming scheme. A case study is developed in order to illustrate and a step-by-step methodology is described. A multi-objective optimization strategy based on Genetic Algorithms linked to a MCDM approach to the solution selection step is proposed. Scenarios of optimization of the selection process are studied to demonstrate the potential improvement gains in performance.
DOCUMENT
Dit is het eindrapport van de Global mOralHealth bijeenkomst georganiseerd door de Wereldgezondheidsorganisatie (WHO) en de universiteit van Montpellier. Docent Mondzorgkunde - Janneke Scheerman en lid van het lectoraat GGZ verpleegkunde - woonde deze bijeenkomst in oktober 2018 bij en droeg bij aan het rapport: https://www.inholland.nl/nieuws/be-helthy-be-mobile/ Als vervolg op de Global mOralHealth bijeenkomst wordt het mOralHealth handboek ontwikkeld, waaraan Janneke meeschrijft. In het handboek worden de procedures voor het ontwikkelen van mOralHealth interventies beschreven.
LINK
The growing energy demand and environmental impact of traditional sources highlight the need for sustainable solutions. Hydrogen produced through water electrolysis, is a flexible and clean energy carrier capable of addressing large-electricity storage needs of the renewable but intermittent energy sources. Among various technologies, Proton Exchange Membrane Water Electrolysis (PEMWE) stands out for its efficiency and rapid response, making it ideal for grid stabilization. In its core, PEMWEs are composed of membrane electrode assemblies (MEA), which consist of a proton-conducting membrane sandwiched between two catalyst-coated electrodes, forming a single PEMWE cell unit. Despite the high efficiency and low emissions, a principal drawback of PEMWE is the capital cost due to high loading of precious metal catalysts and protective coatings. Traditional MEA catalyst coating methods are complex, inefficient, and costly to scale. To circumvent these challenges, VSParticle developed a technology for nanoparticle film production using spark ablation, which generates nanoparticles through high-voltage discharges between electrodes followed by an impaction printing module. However, the absence of liquids poses challenges, such as integrating polymeric solutions (e.g., Nafion®) for uniform, thicker catalyst coatings. Electrohydrodynamic atomization (EHDA) stands out as a promising technique thanks to its strong electric fields used to generate micro- and nanometric droplets with a narrow size distribution. Co-axial EHDA, a variation of this technique, utilizes two concentric needles to spray different fluids simultaneously.The ESPRESSO-NANO project combines co-axial EHDA with spark ablation to improve catalyst uniformity and performance at the nanometer scale by integrating electrosprayed ionomer nanoparticles with dry metal nanoparticles, ensuring better distribution of the catalyst within the nanoporous layer. This novel approach streamlines numerous steps in traditional synthesis and electrocatalyst film production which will address material waste and energy consumption, while simultaneously improve the electrochemical efficiency of PEMWEs, offering a sustainable solution to the global energy crisis.
Treatment of crops with insecticides remains essential because globally more than 75 billion dollars is lost through crop destruction by invasive insects. However it is accompanied by severe disadvantages including i. increasing resistance of the target insects against insecticides and ii. the undesired lethality of beneficial insects such as bees and other pollinator species. The significant reduction of insect species during the last years, at least partly caused by the presently available insecticides has also effects on insect-eating species. Last but not least the presence of residual amount of insecticides in the environment (soil and plants), because of poor (bio)degradation, is another distinct disadvantage. Therefore, the overall aim of this proposal is to design and synthesize peptide based biopesticides. This should lead to Nature inspired green alternatives for insect control because "Peptides" are the small equivalents of "proteins", that are biomolecules, which are universally present in all organisms and subject to their natural biodegradation mechanisms, as well as also chemically degraded in the soil (water, heat, UV, oxygen). Design and synthesis of these environmentally benign compounds will eventually take place in a founded company called "INNOVAPEPLINE". Evaluation of candidate peptide based biopesticides can be carried out in collaboration with a recently founded company (spin-out of the University of Glasgow) called "SOLASTA BIO" (founders professors Shireen Davies, Julian Dow and Rob Liskamp) and/or with other (third) parties such as the University of Wageningen. Upon recent identification of promising candidate compounds ("leads"), chemical optimization studies of leads will take place, followed by evaluation in field trials. In this proposal design, synthesis and chemical optimization of the biological activity of new peptides and development of methods to monitor their biodegradation rate will take place. Thereby expanding the repertoire of peptide based biopesticides. (292 words)