The purpose of this study was to determine the efficacy of an online self-tracking program on physical activity, glycated hemoglobin, and other health measures in patients with type 2 diabetes. Seventy-two patients with type 2 diabetes were randomly assigned to an intervention or control group. All participants received usual care. The intervention group received an activity tracker (Fitbit Zip) connected to an online lifestyle program. Physical activity was analyzed in average steps per day from week 0 until 12. Health outcome measurements occurred in both groups at baseline and after 13 weeks. Results indicated that the intervention group significantly increased physical activity with 1.5 ± 3 days per week of engagement in 30 minutes of moderate-vigorous physical activity versus no increase in the control group (P = .047). Intervention participants increased activity with 1255 ± 1500 steps per day compared to their baseline (P < .010). No significant differences were found in glycated hemoglobin A1c, with the intervention group decreasing -0.28% ± 1.03% and the control group showing -0.0% ± 0.69% (P = .206). Responders (56%, increasing minimally 1000 steps/d) had significantly decreased glycated hemoglobin compared with nonresponders (-0.69% ± 1.18% vs 0.22% ± 0.47%, respectively; P = .007). To improve effectiveness of eHealth programs, additional strategies are needed.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
DOCUMENT
High consumption of carbohydrates is linked to metabolic syndrome, possibly via the endogenous formation of advanced glycated end-products. Many Dutch elementary school children have a carbohydrate intake of >130g/day, the estimated minimum requirement. In this observational study, 126 Dutch elementary school children (5-12y of age) from two schools differing in frequency of gym lessons (2 or 5 times a week) were included. In all participants, height, weight, waist circumference, autofluorescence of skin glycated end-products (AGE-score), sports activity and carbohydrate consumption were recorded once. Sports activities in leisure time differentiated participants in ‘sportsmen’ and ‘non-sportsmen’. Carbohydrate intake and AGE score were positively associated in non-sportsmen (p<0.003), but negatively in sportsmen (p<0.002). In sportsmen, but not in non-sportsmen (p>0.50), a positive association was found (p<0.002) between carbohydrate intake and subject age. The intake of total carbohydrate and carbohydrates from juices and soft drinks was lower (p<0.001) at the Wassenberg School relative to the Alexander School. Based on waist to height ratio, >95% of the children had normal fat mass. No correlations were found between waist to height ratio or BMI and carbohydrate intake. Waist to height ratio was positively associated with BMI (p<0.001)) and subject age (p<0.001). Of all principal parameters, AGE score is most affected by being sportsmen or not (p<0.001). This study indicates that an increased intake of carbohydrates can be counteracted by sufficient physical activity (>2.5 hours per week). This implies that skin autofluorescence is a fast and non-invasive method to screen children for life style.
MULTIFILE
(1) Background: Recent research showed that subtypes of patients with type 2 diabetes may differ in response to lifestyle interventions based on their organ-specific insulin resistance (IR). (2) Methods: 123 Subjects with type 2 diabetes were randomized into 13-week lifestyle intervention, receiving either an enriched protein drink (protein+) or an isocaloric control drink (control). Before and after the intervention, anthropometrical and physiological data was collected. An oral glucose tolerance test was used to calculate indices representing organ insulin resistance (muscle, liver, and adipose tissue) and β-cell functioning. In 82 study-compliant subjects (per-protocol), we retrospectively examined the intervention effect in patients with muscle IR (MIR, n = 42) and without MIR (no-MIR, n = 40). (3) Results: Only in patients from the MIR subgroup that received protein+ drink, fasting plasma glucose and insulin, whole body, liver and adipose IR, and appendicular skeletal muscle mass improved versus control. Lifestyle intervention improved body weight and fat mass in both subgroups. Furthermore, for the MIR subgroup decreased systolic blood pressure and increased VO2peak and for the no-MIR subgroup, a decreased 2-h glucose concentration was found. (4) Conclusions: Enriched protein drink during combined lifestyle intervention seems to be especially effective on increasing muscle mass and improving insulin resistance in obese older, type 2 diabetes patients with muscle IR.
DOCUMENT