Innovative work behavior has been one of the essential attribute of high performing firms, and the roles of entrepreneurial orientation and self-leadership have been important for promoting innovative work behavior. This study advances research on innovative work behavior by examining the mediating role of self-leadership in the relationship between perceived entrepreneurial orientation and innovative work behavior. Structural equation modelling is employed to analyze data from a survey of 404 employees in banking sector. The results of reliability measures and confirmatory factor analysis strongly support the scale of the study. The results from an empirical survey study in the deposit banks reveal that participants’ perceptions about high levels of entrepreneurial orientation have a positive impact on innovative work behavior. The results also provide support for the full mediating role of self-leadership in the relationship between participants’ perceptions of entrepreneurial orientation and innovative work behavior. Additionally, this study provides some implications for practitioners in the banking sector to facilitate innovative work behavior through entrepreneurial orientation and self- leadership.
Background: Patient participation in goal setting is important to deliver client-centered care. In daily practice, however, patient involvement in goal setting is not optimal. Patient-specific instruments, such as the Patient Specific Complaints (PSC) instrument, can support the goal-setting process because patients can identify and rate their own problems. The aim of this study is to explore patients’ experiences with the feasibility of the PSC, in the physiotherapy goal setting. Method: We performed a qualitative study. Data were collected by observations of physiotherapy sessions (n=23) and through interviews with patients (n=23) with chronic conditions in physiotherapy practices. Data were analyzed using directed content analysis. Results: The PSC was used at different moments and in different ways. Two feasibility themes were analyzed. First was the perceived ambiguity with the process of administration: patients perceived a broad range of experiences, such as emotional and supportive, as well as feeling a type of uncomfortableness. The second was the perceived usefulness: patients found the PSC useful for themselves – to increase awareness and motivation and to inform the physiotherapist – as well as being useful for the physiotherapist – to determine appropriate treatment for their personal needs. Some patients did not perceive any usefulness and were not aware of any relation with their treatment. Patients with a more positive attitude toward questionnaires, patients with an active role, and health-literate patients appreciated the PSC and felt facilitated by it. Patients who lacked these attributes did not fully understand the PSC’s process or purpose and let the physiotherapist take the lead. Conclusion: The PSC is a feasible tool to support patient participation in the physiotherapy goal setting. However, in the daily use of the PSC, patients are not always fully involved and informed. Patients reported varied experiences related to their personal attributes and modes of administration. This means that the PSC cannot be used in the same way in every patient. It is perfectly suited to use in a dialogue manner, which makes it very suitable to improve goal setting within client-centered care.
Objectives: This study assesses social workers’ orientation toward the evidence-based practice (EBP) process and explores which specific variables (e.g. age) are associated. Methods: Data were collected from 341 Dutch social workers through an online survey which included a Dutch translation of the EBP Process Assessment Scale (EBPPAS), along with 13 background/demographic questions. Results: The overall level of orientation toward the EBP process is relatively low. Although respondents are slightly familiar with it and have slightly positive attitudes about it, their intentions to engage in it and their actual engagement are relatively low. Respondents who followed a course on the EBP process as a student are more oriented toward it than those who did not. Social workers under 29 are more familiar with the EBP process than those over 29. Conclusions: We recommend educators to take a more active role in teaching the EBP process to students and social workers.
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
Low back pain is the leading cause of disability worldwide and a significant contributor to work incapacity. Although effective therapeutic options are scarce, exercises supervised by a physiotherapist have shown to be effective. However, the effects found in research studies tend to be small, likely due to the heterogeneous nature of patients' complaints and movement limitations. Personalized treatment is necessary as a 'one-size-fits-all' approach is not sufficient. High-tech solutions consisting of motions sensors supported by artificial intelligence will facilitate physiotherapists to achieve this goal. To date, physiotherapists use questionnaires and physical examinations, which provide subjective results and therefore limited support for treatment decisions. Objective measurement data obtained by motion sensors can help to determine abnormal movement patterns. This information may be crucial in evaluating the prognosis and designing the physiotherapy treatment plan. The proposed study is a small cohort study (n=30) that involves low back pain patients visiting a physiotherapist and performing simple movement tasks such as walking and repeated forward bending. The movements will be recorded using sensors that estimate orientation from accelerations, angular velocities and magnetometer data. Participants complete questionnaires about their pain and functioning before and after treatment. Artificial analysis techniques will be used to link the sensor and questionnaire data to identify clinically relevant subgroups based on movement patterns, and to determine if there are differences in prognosis between these subgroups that serve as a starting point of personalized treatments. This pilot study aims to investigate the potential benefits of using motion sensors to personalize the treatment of low back pain. It serves as a foundation for future research into the use of motion sensors in the treatment of low back pain and other musculoskeletal or neurological movement disorders.