Information and Communication Technologies (ICTs) affect the environment in various ways. Their energy consumption is growing exponentially, with and without the use of ‘green’ energy. Increasing environmental awareness within information science has led to discussions on sustainable development. ‘Green Computing’ has been introduced: the study and practice of environmentally sus- tainable computing. This can be defined as ‘designing, manufacturing, using, and disposing of com- puters, servers, and associated subsystems - such as monitors, printers, storage devices, and net- working and communications systems - efficiently and effectively with minimal or no impact on the en- vironment’. Nevertheless, the data deluge makes it not only necessary to pay attention to the hard- and software dimensions of ICTs but also to the value of the data stored. We explore the possibilities to use information and archival science to reduce the amount of stored data. In reducing this amount of stored data, it’s possible to curb unnecessary power consumption. The objectives of this paper are to develop a model (and test its viablility) to [1] increase awareness in organizations for the environ- mental aspects of data storage, [2] reduce the amount of stored data, and [3] reduce power consump- tion for data storage. This model integrates the theories of Green Computing, Information Value Chain (IVC) and Archival Retention Levels (ARLs). We call this combination ‘Green Archiving’. Our explora- tory research was a combination of desk research, qualitative interviews with information technology and information management experts, a focus group, and two exploratory case studies. This paper is the result of the first stage of a research project that is aimed at developing low power ICTs that will automatically appraise, select, preserve or permanently delete data based on their value. Such an ICT will automatically reduce storage capacity and curb power consumption used for data storage. At the same time, data disposal will reduce overload caused by storing the same data in different for- mats, it will lower costs and it reduces the potential for liability.
DOCUMENT
Given the growing number of older people, society as a whole should ideally provide a higher quality of life (QoL) for its ageing citizens through the concept of personalised ageing. Information and communication technologies (ICT) are subject to constant and rapid development, and can contribute to the goal of an improved QoL for older adults. In order to utilise future ICT solutions as a part of an age-friendly smart environment that helps achieve personalised ageing with an increased QoL, one must first determine whether the existing ICT solutions are satisfying the needs of older people. In order to accomplish that, this study contributes in three ways. First, it proposes a framework for the QoL of older adults, in order to provide a systematic review of the state-of-the-art literature and patents in this field. The second contribution is the finding that selected ICT solutions covered by articles and patents are intended for older adults and are validated by them. The third contribution of the study are the six recommendations that are derived from the review of the literature and the patents which would help move the agenda concerning the QoL of older people and personalised ageing with the use of ICT solutions forward. Original article at MDPI; DOI: http://dx.doi.org/10.3390/ijerph17082940 (This article belongs to the Special Issue Feature Papers "Age-Friendly Cities & Communities: State of the Art and Future Perspectives")
MULTIFILE
The development of the World Wide Web, the emergence of social media and Big Data have led to a rising amount of data. Infor¬mation and Communication Technol¬ogies (ICTs) affect the environment in various ways. Their energy consumption is growing exponentially, with and without the use of ‘green’ energy. Increasing envi¬ronmental aware¬ness has led to discussions on sustainable development. The data deluge makes it not only necessary to pay attention to the hard‑ and software di¬mensions of ICTs but also to the ‘value’ of the data stored. In this paper, we study the possibility to methodically reduce the amount of stored data and records in organizations based on the ‘value’ of informa¬tion, using the Green Archiving Model we have developed. Reducing the amount of data and records in organizations helps in allowing organizations to fight the data deluge and to realize the objectives of both Digital Archiving and Green IT. At the same time, methodi¬cally deleting data and records should reduce the con¬sumption of electricity for data storage. As a consequencs, the organizational cost for electricity use should be reduced. Our research showed that the model can be used to reduce [1] the amount of data (45 percent, using Archival Retention Levels and Retention Schedules) and [2] the electricity con¬sumption for data storage (resulting in a cost reduction of 35 percent). Our research indicates that the Green Ar¬chiving Model is a viable model to reduce the amount of stored data and records and to curb electricity use for storage in organi¬zations. This paper is the result of the first stage of a research project that is aimed at devel¬oping low power ICTs that will automa¬tically appraise, select, preserve or permanently delete data based on their ‘value’. Such an ICT will automatically reduce storage capacity and reduce electricity con¬sumption used for data storage. At the same time, data dispos¬al will reduce overload caused by storing the sa¬me data in different for¬mats, it will lower costs and it reduces the po¬tential for liability.
DOCUMENT
The Hague University of Applied Sciences has high ambitions in the field of internationalisation. Two out of four priorities in the institutional policy touch this theme: global citizenship and internationalisation. In order to ensure that the curriculum of the new degree programme HBO ICT meets these priorities, it is interesting to know which international competencies the ICT sector requires. The main research questions in this report is: Which international competencies does the ICT sector demand of ICT graduates and how can these be embedded in the curriculum of the new HBO ICT degree programme? That the question is relevant, is shown by the fact that 25% of the respondents, ICT graduates, indicated that they actually work abroad for longer and shorter periods. In this research an online survey was held among alumni (n = 315) of the precursors of the HBO ICT degree programme in order to find out which international competencies are important. By conducting interviews on the same target group, this information was deepened. In an online survey among graduation supervisors (n = 202) it is examined to what extent the graduates master the required skills by the end of their training. This combined information provides the input to develop the new curriculum of the HBO ICT degree programme and its specialisations. The results show that English and especially English listening and reading skills are considered to be very important. Our alumni master these skills highly satisfactorily. It was specifically mentioned, however, that alumni must overcome a certain reluctance to speak. Intercultural and personal and social competencies are found very important. To master these competencies, students should learn by experiencing. This can be done by working together in international teams, but also in national teams as long as they are supervised explicitly on intercultural, personal and social competencies. As far as the international academic and professional competencies concerned, especially internationally accepted professional knowledge is considered important. On these categories the HBO ICT graduates score satisfactorily (a score of 6 or 6,5 out of 10). Depending on the ambitions of the programme, some improvements could be made here. In general, the ICT sector is quite satisfied with the extent to which our students possess international competencies they consider to be relevant. However, there are suggestions for improvement and some of them have already been included in the toolkit internationalisation as part of the development of the curriculum of HBO ICT.
DOCUMENT
The development of the World Wide Web, the emergence of social media and Big Data have led to a rising amount of data. Information and Communication Technologies (ICTs) affect the environment in various ways. Their energyconsumption is growing exponentially, with and without the use of ‘green’ energy. Increasing environmental awareness has led to discussions on sustainable development. The data deluge makes it not only necessary to pay attention to the hard- and software dimensions of ICTs but also to the ‘value’ of the data stored. In this paper, we study the possibility to methodically reduce the amount of stored data and records in organizations based on the ‘value’ of information, using the Green Archiving Model we have developed. Reducing the amount of data and records in organizations helps in allowing organizations to fight the data deluge and to realize the objectives of both Digital Archiving and Green IT. At the same time, methodically deleting data and records should reduce the consumption of electricity for data storage. As a consequence, the organizational cost for electricity use should be reduced. Our research showed that the model can be used to reduce [1] the amount of data (45 percent, using Archival Retention Levels and Retention Schedules) and [2] the electricity consumption for data storage (resulting in a cost reduction of 35 percent). Our research indicates that the Green Archiving Model is a viable model to reduce the amount of stored data and records and to curb electricity use for storage in organizations. This paper is the result of the first stage of a research project that is aimed at developing low power ICTs that will automatically appraise, select, preserve or permanently delete data based on their ‘value’. Such an ICT will automatically reduce storage capacity and reduce electricity consumption used for data storage. At the same time, data disposal will reduce overload caused by storing the same data in different formats, it will lower costs and it reduces the potential forliability.
DOCUMENT
Green data centres are the talk of the day. But who in fact is involved in developing green data centres? What is their contribution? And what does this contribution constitute in practical terms? This article states which stakeholders are involved in green data centres in the Netherlands, what their involvement is and what effect their involvement has. The article starts by giving the definitions for sustainability and by determining the stakeholders and their possibilities in this field. Next, we examine the actual impact of each stakeholder for arriving at greener data centres. This leads to a number of conclusions for achieving a larger degree of sustainability.
DOCUMENT
This paper describes a project to explore the possibilities of virtual worlds in educating Green IT. In the project a virtual world has been created with various assignments which are meant to create awareness on sustainability aspects of IT. The world (and the assignments) will be incorporated in a course for first-year IT students. In order to measure the effects of the course, a questionnaire has been developed which can be used before and after the course to measure the attitude towards green IT.
DOCUMENT
Author supplied: Within the Netherlands the interest for sustainability is slowly growing. However, most organizations are still lagging behind in implementing sustainability as part of their strategy and in developing performance indicators to track their progress; not only in profit organizations but in higher education as well, even though sustainability has been on the agenda of the higher educational sector since the 1992 Earth Summit in Rio, progress is slow. Currently most initiatives in higher education in the Netherlands have been made in the greening of IT (e.g. more energy efficient hardware) and in implementing sustainability as a competence in curricula. However if we look at the operations (the day to day processes and activities) of Dutch institutions for higher education we just see minor advances. In order to determine what the best practices are in implementing sustainable processes, We have done research in the Netherlands and based on the results we have developed a framework for the smart campus of tomorrow. The research approach consisted of a literature study, interviews with experts on sustainability (both in higher education and in other sectors), and in an expert workshop. Based on our research we propose the concept of a Smart Green Campus that integrates new models of learning, smart sharing of resources and the use of buildings and transport (in relation to different forms of education and energy efficiency). Flipping‐the‐classroom, blended learning, e‐learning and web lectures are part of the new models of learning that should enable a more time and place independent form of education. With regard to smart sharing of resources we have found best practices on sharing IT‐storage capacity among universities, making educational resources freely available, sharing of information on classroom availability and possibilities of traveling together. A Smart Green Campus is (or at least is trying to be) energy neutral and therefore has an energy building management system that continuously monitors the energy performance of buildings on the campus. And the design of the interior of the buildings is better suited to the new forms of education and learning described above. The integrated concept of Smart Green Campus enables less travel to and from the campus. This is important as in the Netherlands about 60% of the CO2 footprint of a higher educational institute is related to mobility. Furthermore we advise that the campus is in itself an object for study by students and researchers and sustainability should be made an integral part of the attitude of all stakeholders related to the Smart Green Campus. The Smart Green Campus concept provides a blueprint that Dutch institutions in higher education can use in developing their own sustainability strategy. Best practices are shared and can be implemented across different institutions thereby realizing not only a more sustainable environment but also changing the attitude that students (the professionals of tomorrow) and staff have towards sustainability.
DOCUMENT
Sustainability is without doubt one of the most important challenges of our time. How can we develop prosperity, without compromising the life of future generations? Companies are integrating concepts of sustainability in their marketing, corporate communications, annual reports and in their actions. Information systems (IS) provide organizations with the ability to change and improve business processes to better support sustainable practices. Therefore, IS can make a contribution to the sustainable development of organizations. However, the organizational change aspects of „Green IS‟ are covered only marginally in literature. This paper aims to contribute the debate on Green IS, by highlighting the role of sustainability in the organizational process of implementing IS and organizational change resulting from IS. Based on a literature review of the concepts of sustainability, and the role of IS in sustainability, we will apply the concepts of sustainability to IS projects and create a checklist for developing sustainability indicators in IS projects.
DOCUMENT
De meeste van onze rekencentra vragen, voor elke kilowatt die ze aan ICT-apparaten besteden, vaak meer dan anderhalve kilowatt aan stroom voor koeling en UPS. The Green Grid noemt dit een power usage effectiveness (PUE) van 2,5 of hoger.
DOCUMENT