This papers presents some ideas to use so-called software agents as a software representation of a product not only during manufacturing but also during the whole life cycle of the product. Software agents are autonomous entities capable of collecting useful information about products. By their design and capabilities software agents fit well in the concept of ubiquitous computing. We use these agents in our newly developed manufacturing process. This paper discusses further use of agent technology.
Sustainability is without doubt one of the most important challenges of our time. How can we develop prosperity, without compromising the life of future generations? Companies are integrating concepts of sustainability in their marketing, corporate communications, annual reports and in their actions. Information systems (IS) provide organizations with the ability to change and improve business processes to better support sustainable practices. Therefore, IS can make a contribution to the sustainable development of organizations. However, the organizational change aspects of „Green IS‟ are covered only marginally in literature. This paper aims to contribute the debate on Green IS, by highlighting the role of sustainability in the organizational process of implementing IS and organizational change resulting from IS. Based on a literature review of the concepts of sustainability, and the role of IS in sustainability, we will apply the concepts of sustainability to IS projects and create a checklist for developing sustainability indicators in IS projects.
Author supplied: The production system described in this paper in an im- plementation of an agile agent-based production system. This system is designed to meet the requirements of modern production, where short time to market, requirement-driven production and low cost small quan- tity production are important issues. The production is done on special devices called equiplets. A grid of these equiplets connected by a fast network is capable of producing a variety of diverent products in parallel. The multi-agent-based software infrastructure is responsible for the agile manufacturing. A product agent is responsible for the production of a single product and equiplet agents will perform the production steps to assemble the product. This paper describes this multiagent-based production system with the focus on the product agent.
In greenhouse horticulture harvesting is a major bottleneck. Using robots for automatic reaping can reduce human workload and increase efficiency. Currently, ‘rigid body’ robotic grippers are used for automated reaping of tomatoes, sweet peppers, etc. However, this kind of robotic grasping and manipulation technique cannot be used for harvesting soft fruit and vegetables as it will cause damage to the crop. Thus, a ‘soft gripper’ needs to be developed. Nature is a source of inspiration for temporary adhesion systems, as many species, e.g., frogs and snails, are able to grip a stem or leave, even upside down, with firm adhesion without leaving any damage. Furthermore, larger animals have paws that are made of highly deformable and soft material with adjustable grip size and place holders. Since many animals solved similar problems of adhesion, friction, contact surface and pinch force, we will use biomimetics for the design and realization of the soft gripper. With this interdisciplinary field of research we aim to model and develop functionality by mimicking biological forms and processes and translating them to the synthesis of materials, synthetic systems or machines. Preliminary interviews with tech companies showed that also in other fields such as manufacturing and medical instruments, adjustable soft and smart grippers will be a huge opportunity in automation, allowing the handling of fragile objects.
Cities, the living place of 75% of European population, are crucial for sustainable transition in a just society. Therefore, the EU has launched a Mission for 100 Climate-Neutral Smart Cities (100CNSC). Construction is a key industry in making cities more sustainable. Currently, construction consumes 50% resources, uses 40% energy, and emits 36% greenhouse gasses. The sector is not cost-efficient, not human-friendly, and not healthy – it is negatively known for “3D: dirty, dangerous, demanding”. As such, the construction sector is not attractive for educated and skilled young professionals that are needed for the sustainable transition and for resolving the housing crisis. In contrast with the non-circular designs, materials and techniques that are still common in the construction industry, some other industries and fields have cultivated higher standards for sustainable products, especially in clean and efficient assembly and disassembly. Examples can be found in the maritime and off-shore industry, smart manufacturing, small electronics, and retail. The Hague University of Applied Sciences (THUAS) aims to become the leader of a strong European consortium for preliminary research to develop knowledge that is needed for the upcoming Horizon Europe proposal (within Cluster 4, Destination 1 - Re-manufacturing and De-manufacturing technologies) in relation with the EU Mission 100CNSC. The goals of this preliminary research are: (a) to articulate new concepts that will become an input for a new research proposal and (b) to organize a high-quality European consortium with high-quality partners for a lasting collaboration. This preliminary research project focuses on the question: How can the construction sector adopt and adapt the best practices in assembly and disassembly from other industries –including maritime, manufacturing and retails– in order to enhance circular urban construction and renovation with an active involvement of educated and skilled young professionals?
Lightweight, renewable origin, mild processing, and facile recyclability make thermoplastics the circular construction materials of choice. However, in additive manufacturing (AM), known as 3D printing, mass adoption of thermoplastics lags behind. Upon heating into the melt, particles or filaments fuse first in 2D and successively in 3D, realizing unprecedented geometrical freedom. Despite a scientific understanding of fusion, industrial consortium experts are still confronted with inferior mechanical properties of fused weld interfaces in reality. Exemplary is early mechanical failure in patient-specific and biodegradable medical devices based on Corbion’s poly(lactides), and more technical constructs based on Mitsubishi’s poly(ethylene terephthalate), PET. The origin lies in contradictory low rate of polymer diffusion and entangling, and too high rate of crystallization that is needed to compensate insufficient entangling. Knowing that Zuyd University in close collaboration with Maastricht University has eliminated these contradictory time-scales for PLA-based systems, Corbion and Mitsubishi contacted Zuyd with the question to address and solve their problem. In previous research it has been shown that interfacial co-crystallization of alternating depositioned opposite stereo-specific PLA grades resulted in strengthening of the interface. To promote mass adoption of thermoplastics AM industries, the innovation question has been phrased as follows: What is a technically scalable route to induce toughness in additively manufactured thermoplastics? High mechanical performance translates into an intrinsic brittle to tough transition of stereocomplex reinforced AM products, focusing on fused deposition modeling. Taking the professional request on biocompatibility, engineering performance and scalability into account, the strategies in lowering the yield stress and/or increasing the network strength comprise (i) biobased and biocompatible plasticizers for stereocomplexed poly(lactide), (ii) interfacial co-crystallization of intrinsically tough polyester based materials formulations, and (iii) in-situ interfacial transesterification of recycled PET formulations.