Climate change is undermining the importance and sustainability of cooperatives as important organizations in small holder agriculture in developing countries. To adapt, cooperatives could apply carbon farming practices to reduce greenhouse gas emissions and enhance their business by increasing yields, economic returns and enhancing ecosystem services. This study aimed to identify carbon farming practices from literature and investigate the rate of application within cooperatives in Uganda. We reviewed scholarly literature and assed them based on their economic and ecological effects and trade-offs. Field research was done by through an online survey with smallholder farmers in 28 cooperatives across 19 districts in Uganda. We identified 11 and categorized them under three farming systems: organic farming, conservation farming and integrated farming. From the field survey we found that compost is the most applied CFP (54%), crop rotations (32%) and intercropping (50%) across the three categorizations. Dilemmas about right organic amendment quantities, consistent supplies and competing claims of residues for e.g. biochar production, types of inter crops need to be solved in order to further advance the application of CFPs amongst crop cooperatives in Uganda.
MULTIFILE
Ship-source greenhouse gas (GHG) emissions could increase by up to 250% from 2012 levels by 2050 owing to increasing global freight volumes. Binding international legal agreements to regulate GHGs, however, are lacking as technical solutions remain expensive and crucial industrial support is absent. In 2003, IMO adopted Resolution A.963 (23) to regulate shipping CO2 emissions via technical, operational, and market-based routes. However, progress has been slow and uncertain; there is no concrete emission reduction target or definitive action plan. Yet, a full-fledged roadmap may not even emerge until 2023. In this policy analysis, we revisit the progress of technical, operational, and market-based routes and the associated controversies. We argue that 1) a performance-based index, though good-intentioned, has loopholes affecting meaningful CO2 emission reductions driven by technical advancements; 2) using slow steaming to cut energy consumption stands out among operational solutions thanks to its immediate and obvious results, but with the already slow speed in practice, this single source has limited emission reduction potential; 3) without a technology-savvy shipping industry, a market-based approach is essentially needed to address the environmental impact. To give shipping a 50:50 chance for contributing fairly and proportionately to keep global warming below 2°C, deep emission reductions should occur soon.
Inaugural address of Frederike Praasterink, Professor Future Food Systems 22 February 2018. Three important principles contribute to the transformation of food systems: - Redesign food systems from ‘less bad’ to ‘net positive’ - Reconnect consumers, producers, youth - Revalue food through true cost accounting and new business models
MULTIFILE
Dit project richt zich op de ontwikkeling van de biotechnologische en chemische procesvoering om op basis van mycelium een alternatief voor leer te produceren. In vergelijking met leer is het voordeel van mycelium dat geen runderen nodig zijn, de productie kan plaatsvinden onder industriële condities en met gebruik van reststromen, de CO2 uitstoot alsook hoeveelheid afval verlaagd wordt, en het gebruik van toxische stoffen zoals chroom wordt vervangen door biobased alternatieven. In het project zullen de procescondities worden bepaald die leiden tot de vorming van optimaal mycelium. Daartoe zullen twee verschillende schimmels worden gekweekt in bioreactoren bij de Hogeschool Arnhem Nijmegen (HAN), waarbij specifiek de effecten van de procescondities (temperatuur, pH, shear, beluchting) en de samenstelling van het kweekmedium op groei van het mycelium en materiaal eigenschappen zullen worden onderzocht. De meest optimale condities zullen vervolgens worden opgeschaald. Op het op deze wijze verkregen materiaal zal Mylium BV een aantal nabehandelingsstappen uitvoeren om de sterkte, elasticiteit, en duurzaamheid van het product te vergroten. Daartoe worden biobased plasticizers, cross-linkers en/of flexibility agents gebruikt. Het resulterende eindproduct zal middels specifiek fysieke testen vergeleken worden met leer alsook worden voorgelegd aan mogelijke klanten. Indien beide resultaten positief zijn kan het betreffende proces na het project verder worden opgeschaald voor toepassing naar de markt.
Horticulture crops and plants use only a limited part of the solar spectrum for their growth, the photosynthetically active radiation (PAR); even within PAR, different spectral regions have different functionality for plant growth, and so different light spectra are used to influence different properties of the plant, such as leaves, fruiting, longer stems and other plant properties. Artificial lighting, typically with LEDs, has been used to provide these specified spectra per plant, defined by their light recipe. This light is called steering light. While the natural sunlight provides a much more sustainable and abundant form of energy, however, the solar spectrum is not tuned towards specific plant needs. In this project, we capitalize on recent breakthroughs in nanoscience to optimally shape the solar spectrum, and produce a spectrally selective steering light, i.e. convert the energy of the entire solar spectrum into a spectrum most useful for agriculture and plant growth to utilize the sustainable solar energy to its fullest, and save on artificial lighting and electricity. We will take advantage of the developed light recipes and create a sustainable alternative to LED steering light, using nanomaterials to optimally shape the natural sunlight spectrum, while maintaining the increased yields. As a proof of concept, we are targeting the compactness of ornamental plants and seek to steer the plants’ growth to reduce leaf extension and thus be more valuable. To realize this project the Peter Schall group at the UvA leads this effort together with the university spinout, SolarFoil, whose expertise lies in the development of spectral conversion layers for horticulture. Renolit - a plastic manufacturer and Chemtrix, expert in flow synthesis, provide expertise and technical support to scale the foil, while Ludvig-Svensson, a pioneer in greenhouse climate screens, provides the desired light specifications and tests the foil in a controlled setting.
In the Glasgow declaration (2021), the tourism sector promised to reduce its CO2 emissions by 50% and reduce them to zero by 2050. The urgency is felt in the sector, and small steps are made at company level, but there is a lack of insight and overview of effective measures at global level.This study focuses on the development of a necessary mix of actions and interventions that the tourism sector can undertake to achieve the goal of a 50% reduction in greenhouse gases by 2030 towards zero emissions by 2050. The study contributes to a better understanding of the paths that the tourism sector can take to achieve this and their implications for the sector. The aim of the report is to spark discussion, ideas and, above all, action.The study provides a tool that positively engages the sector in the near and more distant future, inspires discussion, generates ideas, and drives action. In addition, there will be a guide that shows the big picture and where the responsibilities lie for the reduction targets. Finally, the researchers come up with recommendations for policymakers, companies, and lobbyists at an international and European level.In part 1 of the study, desk research is used to lay the foundation for the study. Here, the contribution of tourism to global greenhouse gas emissions is mapped out, as well as the image and reputation of the sector on climate change. In addition, this section describes which initiatives in terms of, among other things, coalitions and declarations have already been taken on a global scale to form a united front against climate change.In part 2, 40 policies and measures to reduce greenhouse gas emissions in the sector are evaluated in a simulation. For this simulation, the GTTMdyn simulation model, developed by Paul Peeters from BUAS, is used which works on a global scale and shows the effect of measures on emissions, tourism, transport, economy, and behaviour. In this simulation, the researchers can 'test' measures and learn from mistakes. In the end one or more scenarios will; be developed that reach the goals of 50% reduction in 2030 and zero emissions in 2050. In part 3, the various actions that should lead to the reduction targets are tested against the impacts on the consequences for the global tourism economy, its role in providing leisure and business opportunities and the consequences for certain destinations and groups of industry stakeholders. This part will be concluded with two workshops with industry experts to reflect on the results of the simulation.Part 4 reports the results of the study including an outline of the consequences of possibly not achieving the goal. With this, the researchers want to send a warning signal to stakeholders who may be resistant to participating in the transition.