In November 2019, the High Performance Greenhouse project (HiPerGreen) was nominated for the RAAK Award 2019, as one of the best applied research projects in the Netherlands. This paper discusses the challenges faced, lessons learned and critical factors in making the project into a success.
DOCUMENT
This paper describes the concept of a new algorithm to control an Unmanned Aerial System (UAS) for accurate autonomous indoor flight. Inside a greenhouse, Global Positioning System (GPS) signals are not reliable and not accurate enough. As an alternative, Ultra Wide Band (UWB) is used for localization. The noise is compensated by combining the UWB with the delta position signal from a novel optical flow algorithm through a Kalman Filter (KF). The end result is an accurate and stable position signal with low noise and low drift.
DOCUMENT
The Dutch greenhouse horticultural industry is characterized by world leadership in high-tech innovation. The dynamics of this playing field are innovation in production systems and automation, reduction in energy consumption and sharing limited space. However, international competitive advantage of the industry is under pressure and sustainable growth of individual enterprises is no longer a certainty. The sector's ambition is to innovate better and grow faster than the competition in the rest of the world. Realizing this ambition requires strengthening the knowledge base, stimulating entrepreneurship, innovation (not just technological, but especially business process innovation). It also requires educating and professionalizing people. However, knowledge transfer in this industry is often fragmented and innovation through collaboration takes up a mere 25-30% of the opportunities. The greenhouse horticulture sector is generally characterized by small scale, often family run businesses. Growers often depend on the Dutch auction system for their revenues and suppliers operate mainly independently. Horizontal and vertical collaboration throughout the value chain is limited. This paper focuses on the question: how can the grower and the supplier in the greenhouse horticulture chain gain competitive advantage through radical product and process innovation. The challenge lies in time- to-market, in customer relationship, in developing new product/market combinations and in innovative entrepreneurship. In this paper an innovation and entrepreneurial educational and research programme is introduced. The programme aims at strengthening multidisciplinary collaboration between enterprise, education and research. Using best practice examples, the paper illustrates how companies can realize growth and improve innovative capabilities of the organization as well as the individual by linking economic and social sustainability. The paper continues to show how participants of the programme develop competencies by means of going through a learning cycle of single-loop, double-loop and triple loop learning: reduction of mistakes, change towards new concepts and improvement of the ability to learn. Furthermore, the paper discusses our four-year programme, whose objectives are trying to eliminate interventions that stimulate the innovative capabilities of SME's in this sector and develop instruments that are beneficial to organizations and individual entrepreneurs and help them make the step from vision to action, and from incremental to radical innovation. Finally, the paper illustrates the importance of combining enterprise, education and research in networks with a regional, national and international scope, with examples from the greenhouse horticulture sector. These networks generate economic regional and national growth and international competitiveness by acting as business accelerators.
DOCUMENT
The Dutch greenhouse horticulture industry is characterized by world leadership in high-tech innovation. The dynamics of this playing field are innovation in production systems and automation, reduction in energy consumption and sharing limited space. However, international competitive advantage of the industry is under pressure and sustainable growth of individual enterprises is no longer a certainty. The sector's ambition is to innovate better and grow faster than the competition in the rest of the world. Realizing this ambition requires strengthening the knowledge base, stimulating entrepreneurship, innovation (not just technological, but especially business process innovation). It also requires educating and professionalizing people. However, knowledge transfer in this industry is often fragmented and innovation through horizontal and vertical collaboration throughout the value chain is limited. This paper focuses on the question: how can the grower and the supplier in the greenhouse horticulture chain gain competitive advantage through radical product and process innovation. The challenge lies in time- to-market, in customer relationship, in developing new product/market combinations and in innovative entrepreneurship. In this paper an innovation and entrepreneurial educational and research programme is introduced. The programme aims at strengthening multidisciplinary collaboration between enterprise, education and research. Using best practice examples, the paper illustrates how companies can realize growth and improve the innovative capacity of the organization as well as the individual by linking economic and social sustainability. The paper continues to show how participants of the program develop competencies by means of going through a learning cycle of single-loop, double-loop and triple loop learning: reduction of mistakes, change towards new concepts and improvement of the ability to learn. Finally, the paper illustrates the importance of combining enterprise, education and research in regional networks, with examples from the greenhouse horticulture sector. These networks generate economic growth and international competitiveness by acting as business accelerators.
DOCUMENT
How can the grower and the supplier in the greenhouse horticulture industry gain competitive advantage through radical innovation? The challenge lies in time- to-market, in customer relationship, in developing new product/market combinations and in innovative entrepreneurship. Realizing this ambition requires strengthening the knowledge base, stimulating innovation, entrepreneurship and education. It also requires professionalizing people. In this paper an innovation and entrepreneurial educational and research programme is introduced. This KITE120-programme aims at strengthening multidisciplinary collaboration between enterprise, education and research. It helps making the step from ambition to action, and from incremental to radical innovation. We call this an 'Amazing Jump'.
DOCUMENT
This article investigates the phenomenon of rebound effects in relation to a transition to a Circular Economy (CE) through qualitative inquiry. The aim is to gain insights in manifestations of rebound effects by studying the Dutch textile industry as it transitions to a circular system, and to develop appropriate mitigation strategies that can be applied to ensure an effective transition. The rebound effect, known originally from the energy efficiency literature, occurs when improvements in efficiency or other technological innovations fail to deliver on their environmental promise due to (behavioral) economic mechanisms. The presence of rebound in CE contexts can therefore lead to the structural overstatement of environmental benefits of certain innovations, which can influence reaching emission targets and the preference order of recycling. In this research, the CE rebound effect is investigated in the Dutch textile industry, which is identified as being vulnerable to rebound, yet with a positive potential to avoid it. The main findings include the very low awareness of this effect amongst key stakeholders, and the identification of specific and general instances of rebound effects in the investigated industry. In addition, the relation of these effects to Circular Business Models and CE strategies are investigated, and placed in a larger context in order to gain a more comprehensive understanding about the place and role of this effect in the transition. This concerns the necessity for a new approach to how design has been practiced traditionally, and the need to place transitional developments in a systems perspective. Propositions that serve as theory-building blocks are put forward and include suggestions for further research and recommendations about dealing with rebound effects and shaping an eco-effective transition. Thomas Siderius, Kim Poldner, Reconsidering the Circular Economy Rebound effect: Propositions from a case study of the Dutch Circular Textile Valley, Journal of Cleaner Production, Volume 293, 2021, 125996, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2021.125996.
DOCUMENT
Energiebeheer gericht aanpakken, Het analyseren van doelstellingen, resultaten en impacts van energie- en broeikasgasbeheersprogramma’s in bedrijven (met een samenvatting in het Nederlands): De wereldwijde uitstoot van broeikasgassen moet drastisch worden teruggebracht om de mondiale stijging van de temperatuur tot het relatief veilige niveau van maximaal 2 graden Celsius te beperken. In de komende decennia zal de verbetering van de energie-efficiëntie de belangrijkste strategie zijn voor het verminderen van de energiegerelateerde uitstoot van broeikasgassen. Hoewel er een enorm potentieel is voor verbetering van de energie-efficiëntie, wordt een groot deel daarvan nog niet benut. Dit wordt veroorzaakt door diverse investeringsbarrières die de invoering van maatregelen voor energie-efficiëntie verbetering verhinderen. De invoering van energiemanagement wordt vaak beschouwd als een manier om dergelijke barrières voor energiebesparing te overwinnen. De invoering van energiemanagement in bedrijven kan worden gestimuleerd door de introductie van programma's voor energie-efficiëntie verbetering en vermindering van de uitstoot van broeikasgassen. Deze programma's zijn vaak een combinatie van verschillende elementen zoals verplichtingen voor energiemanagement; (ambitieuze) doelstellingen voor energiebesparing of beperking van de uitstoot van broeikasgassen; de beschikbaarheid van regelingen voor stimulering, ondersteuning en naleving; en andere verplichtingen, zoals openbare rapportages, certificering en verificatie. Tot nu toe is er echter beperkt inzicht in het proces van het formuleren van ambitieuze doelstellingen voor energie-efficiëntie verbetering of het terugdringen van de uitstoot van broeikasgassen binnen deze programma's, in de gevolgen van de invoering van dergelijke programma's op de verbetering van het energiemanagement, en in de impact van deze programma's op energiebesparing of de vermindering van de uitstoot van broeikasgassen. De centrale onderzoeksvraag van dit proefschrift is als volgt geformuleerd: "Wat is de impact van energie- en broeikasgasmanagement programma’s op het verbeteren van het energiemanagement in de praktijk, het versnellen van de energieefficiëntie verbetering en het beperken van de uitstoot van broeikasgassen in bedrijven?".
DOCUMENT
Semi-closed greenhouses have been developed in which window ventilation is minimized due to active cooling, enabling enhanced CO2 concentrations at high irradiance. Cooled and dehumidified air is blown into the greenhouse from below or above the canopy. Cooling below the canopy may induce vertical temperature gradients along the length of the plants. Our first aim was to analyze the effect of the positioning of the inlet of cooled and dehumidified air on the magnitudes of vertical temperature and VPD gradients in the semi-closed greenhouses. The second aim was to investigate the effects of vertical temperature gradients on assimilate production, partitioning, and fruit growth. Tomato crops were grown year-round in four semiclosed greenhouses with cooled and dehumidified air blown into the greenhouses from below or above the crop. Cooling below the canopy induced vertical temperature and VPD gradients. The temperature at the top of the canopy was over 5°C higher than at the bottom, when outside solar radiation was high (solar radiation >250 J cm-2 h-1). Total dry matter production was not affected by the location of the cooling (4.64 and 4.80 kg m-2 with cooling from above and from below, respectively). Percentage dry matter partitioning to the fruits was 74% in both treatments. Average over the whole growing season the fresh fruit weight of the harvested fruits was not affected by the location of cooling (118 vs 112 g fruit-1). However, during summer period the average fresh fruit weight of the harvested fruits in the greenhouse with cooling from below was higher than in the greenhouse with cooling from above (124 vs 115 g fruit-1).
DOCUMENT
Dynamic body feedback is used in dance movement therapy (DMT), with the aim to facilitate emotional expression and a change of emotional state through movement and dance for individuals with psychosocial or psychiatric complaints. It has been demonstrated that moving in a specific way can evoke and regulate related emotions. The current study aimed to investigate the effects of executing a unique set of kinetic movement elements on an individual mover’s experience of happiness. A specific sequence consisting of movement elements that recent studies have related to the feeling of happiness was created and used in a series of conditions. To achieve a more realistic reflection of DMT practice, the study incorporated the interpersonal dimension between the dance movement therapist (DMTh) and the client, and the impact of this interbodily feedback on the emotional state of the client. This quantitative study was conducted in a within-subject design. Five male and 20 female participants (mean age = 20.72) participated in three conditions: a solo executed movement sequence, a movement sequence executed with a DMTh who attuned and mirrored the movements, and a solo executed movement sequence not associated with feelings of happiness. Participants were only informed about the movements and not the feelings that may be provoked by these movements. The effects on individuals were measured using the Positive and Negative Affect Schedule and visual analog scales. Results showed that a specific movement sequence based on movement elements associated with happiness executed with a DMTh can significantly enhance the corresponding affective state. An additional finding of this study indicated that facilitating expressed emotion through movement elements that are not associated with happiness can enhance feelings such as empowerment, pride, and determination, which are experienced as part of positive affect. The results show the impact of specific fullbody movement elements on the emotional state and the support outcome of DMT on emotion regulation.
DOCUMENT
This study presents an automated method for detecting and measuring the apex head thickness of tomato plants, a critical phenotypic trait associated with plant health, fruit development, and yield forecasting. Due to the apex's sensitivity to physical contact, non-invasive monitoring is essential. This paper addresses the demand for automated, contactless systems among Dutch growers. Our approach integrates deep learning models (YOLO and Faster RCNN) with RGB-D camera imaging to enable accurate, scalable, and non-invasive measurement in greenhouse environments. A dataset of 600 RGB-D images captured in a controlled greenhouse, was fully preprocessed, annotated, and augmented for optimal training. Experimental results show that YOLOv8n achieved superior performance with a precision of 91.2 %, recall of 86.7 %, and an Intersection over Union (IoU) score of 89.4 %. Other models, such as YOLOv9t, YOLOv10n, YOLOv11n, and Faster RCNN, demonstrated lower precision scores of 83.6 %, 74.6 %, 75.4 %, and 78 %, respectively. Their IoU scores were also lower, indicating less reliable detection. This research establishes a robust, real-time method for precision agriculture through automated apex head thickness measurement.
DOCUMENT