Greenhouse gas emissions from air transport, and methods to calculate them, are notwell defined in the current literature. While calculating the direct emissions of CO2 is already causefor some debate, the contribution of other emissions and impacts – like nitrogen oxides (NOx),contrails, water vapour – to climate change still lacks a reliable metric. As aviation is the largestemitter of greenhouse gases within tourism, accurate estimates of carbon and non-carbon emissions are important. This paper presents some standardisation as well as general insights to assistresearchers assessing the impact of aviation on climate change in scenario studies or evaluatingmitigation policies. The IPCC introduced a radiative forcing index (RFI) to measure the role of aviation in climate change, which is in scenario studies or evaluations of policies often used as a kind ofconstant ‘equivalence factor’. The paper shows this to be inaccurate and proposes ways to accountfor both carbon and non-carbon climate impacts of air transport
DOCUMENT
This paper examines a paradoxical issue in tourism's adaptation to climate change and emissions reduction demands. Operators increasingly take tourists to destinations threatened by climate change, with Antarctica and other polar regions as favourites and cruise ship and aircraft as main transport modes. The selling point is to see a destination before it disappears, a form of last chance tourism. This has been claimed to increase the environmental awareness of tourists and make them "ambassadors" for conservation and the visited destination. Antarctic cruise ship passengers tripled from 2000 to 2007. The paper finds that high levels of greenhouse gas emissions are created by cruise ship tourists in general, and especially high levels for those visiting the Antarctic, up to approximately eight times higher per capita and per day than average international tourism trips. A survey found no evidence for the hypothesis that the trips develop greater environmental awareness, change attitudes or encourage more sustainable future travel choices. Of the Antarctic cruise passengers surveyed, 59% felt that their travel did not impact on climate change; fewer than 7% had or might offset their emissions. Alternative opportunities for visitation to glacial/polar destinations that comply with the desire to reduce future emissions are discussed.
LINK
This review paper examines the greenhouse gas (GHG) emission reduction targets postulated by a range of organizations seeking to reduce the consequences of global climate change and how, or if, the global tourism sector can achieve its share of those targets. It takes both existing estimates of current tourism GHG emissions and emissions projected in a business-as-usual scenario through to 2035 and contrasts them with the "aspirational" emission reduction targets proclaimed by the sector. Analysis reveals that with current high-growth emission trends in tourism, the sector could become a major global source of GHGs in the future if other economic sectors achieve significant emission reductions. Success in achieving emission reductions in tourism is found to be largely dependent on major policy and practice changes in air travel, and stated tourism emission reduction targets do not appear feasible without volumetric changes considering the limited technical emission reduction potential currently projected for the aviation sector. The opportunities and challenges associated with a shift towards a low-carbon global economy are anticipated to transform tourism globally and in all respects. Much greater consideration and dissemination of these issues is required to inform future tourism development and travel decisions.
DOCUMENT
PBL is the initiator of the Work Programme Monitoring and Management Circular Economy 2019-2023, a collaboration between CBS, CML, CPB, RIVM, TNO, UU. Holidays and mobility are part of the consumption domains that PBL researches, and this project aims to calculate the environmental gains per person per year of the various circular behavioural options for both holiday behaviour and daily mobility. For both behaviours, a range of typical (default) trips are defined and for each several circular option explored for CO2 emissions, Global warming potential and land use. The holiday part is supplied by the Centre for Sustainability, Tourism and Transport (CSTT) of the BUas Academy of Tourism (AfT). The mobility part is carried out by the Urban Intelligence professorship of the Academy for Built Environment and Logistics (ABEL).The research question is “what is the environmental impact of various circular (behavioural) options around 1) holidays and 2) passenger mobility?” The consumer perspective is demarcated as follows:For holidays, transportation and accommodation are included, but not food, attractions visited and holiday activitiesFor mobility, it concerns only the circular options of passenger transport and private means of transport (i.e. freight transport, business travel and commuting are excluded). Not only some typical trips will be evaluated, but also the possession of a car and its alternatives.For the calculations, we make use of public databases, our own models and the EAP (Environmental Analysis Program) model developed by the University of Groningen. BUAs projectmembers: Centre for Sustainability, Tourism and Transport (AT), Urban Intelligence (ABEL).
In the road transportation sector, CO2 emission target is set to reduce by at least 45% by 2030 as per the European Green Deal. Heavy Duty Vehicles contribute almost quarter of greenhouse gas emissions from road transport in Europe and drive majorly on fossil fuels. New emission restrictions creates a need for transition towards reduced emission targets. Also, increasing number of emission free zones within Europe, give rise to the need of hybridization within the truck and trailer community. Currently, in majority of the cases the trailer units do not possess any kind of drivetrain to support the truck. Trailers carry high loads, such that while accelerating, high power is needed. On the other hand, while braking the kinetic energy is lost, which otherwise could be recaptured. Thus, having a trailer with electric powertrain can support the truck during traction and can charge the battery during braking, helping in reducing the emissions and fuel consumption. Using the King-pin, the amount of support required by trailer can be determined, making it an independent trailer, thus requiring no modification on the truck. Given the heavy-duty environment in which the King-pin operates, the measurement design around it should be robust, compact and measure forces within certain accuracy level. Moreover, modification done to the King-pin is not apricated. These are also the challenges faced by V-Tron, a leading company in the field of services in mobility domain. The goal of this project is to design a smart King-pin, which is robust, compact and provides force component measurement within certain accuracy, to the independent e-trailer, without taking input from truck, and investigate the energy management system of the independent e-trailer to explore the charging options. As a result, this can help reduce the emissions and fuel consumption.
Dit project omvat een verkennend onderzoek dat beoogt de technische route, de scope en de randvoorwaarden van de energietransitie op vakantieparken en campings in beeld te brengen. De sector voor vakantieparken en campings zal, net als alle andere sectoren, binnen dertig jaar nul-emissies van broeikasgassen moeten bereiken. De gemeente Goeree-Overflakkee en de Provincie Zuid-Holland zijn voornemens om een project op te zetten om de voor Goeree-Overflakkee belangrijke sector te helpen de energietransitie te maken. De gemeente en provincie willen graag antwoord op de vraag welke kennis en welke partijen nodig zijn om de duurzaamheidsdoelstelling zodanig in een beleidsproces te gieten dat de belangen van de vele stakeholders in deze sector samenkomen op een wijze dat de doelstelling gehaald wordt.This project entails an exploratory study that aims to map the technical route, scope and preconditions of the energy transition at holiday parks and campsites. The holiday park and camping sector, like all other sectors, will have to achieve zero greenhouse gas emissions within thirty years. The municipality of Goeree-Overflakkee and the Province of South Holland intend to set up a project to help this important sector on Goeree-Overflakkee to make the energy transition. The municipality and province would like an answer to the question of what knowledge and which parties are needed to put the sustainability objective into a policy process in such a way that the interests of the many stakeholders in this sector come together in a way that the objective is achieved.