Elke periode kent zijn eigen revolutie en elke revolutie brengt zijn eigen organisatorische model met zich mee. We bevinden ons nu in de 4e industri¨ele revolutie, waar het internet van dingen ons verbindt met autonome embedded systemen. Deze systemen zijn actief in de virtuele ’cyber’ wereld, alsook in de echte ’fysieke’ wereld om ons heen. Deze zogenoemde ’Cyber-Fysieke’ Systemen volgen daarmee een modern organisatorisch model, namelijk zelfmanagement, en zijn dan ook in staat zelf proactieve acties te ondernemen. Dit proefschrift belicht productiesystemen vanuit het Cyber-Fysieke perspectief. De productiesystemen zijn hier herconfigureerbaar, autonoom en zeer flexibel. Dit kan enkel worden bereikt door het ontwikkelen van nieuwe methodes en het toepassen van nieuwe technologie¨en die flexibiliteit verder bevorderen. Echter, effici¨entie is ook van belang, bijvoorbeeld door productassemblage zo flexibel te maken dat het daardoor kosteneffici¨ent is om de productie van diverse producten met een lage oplage, zogenaamde high-mix, low volume producten, te automatiseren. De mogelijkheid om zo flexibel te kunnen produceren moet bereikt worden door de creatie van nieuwe methoden en middelen, waarbij nieuwe technologie¨en worden gecombineerd; een belangrijk aspect hierbij is dat dit toepasbaar getest moet worden door gebruik van simulatoren en speciaal hiervoor ontwikkelde productiesystemen. Dit onderzoek zal beginnen met het introduceren van het concept achter de bijbehorende productiemethodologie, welke Grid Manufacturing is genoemd. Grid Manufacturing wordt uitgevoerd door autonome entiteiten (agenten) die zowel de productiesystemen zelf, als de producten representeren. Producten leven dan al in de virtuele cyber wereld voordat zij daadwerkelijk zijn gebouwd, en zijn zich bewust uit welke onderdelen zij gemaakt moeten worden. De producten communiceren en overleggen met de autonome herconfigureerbare productiesystemen, de zogenaamde equiplets. Deze equiplets leveren generieke diensten aan een grote diversiteit aan producten, die hierdoor op elk moment geproduceerd kunnen worden. Het onderzoek focust hierbij specifiek op de equiplets en de technische uitdagingen om dynamisch geautomatiseerde productie mogelijk te maken. Om Grid Manufacturing mogelijk te maken is er een set van technologische uitdagingen onderzocht. De achtergrond, onderzoeksaanpak en concepten zijn dan ook de eerste drie inleidende hoofdstukken. Daarna begint het onderzoek met Hoofdstuk 4 Object Awareness. Dit hoofdstuk beschrijft een dynamische manier waarop informatie uit verschillende autonome systemen gecombineerd wordt om objecten te herkennen, lokaliseren en daarmee te kunnen manipuleren. Hoofdstuk 5 Herconfiguratie beschrijft hoe producten communiceren met de equiplets en welke achterliggende systemen ervoor zorgen dat, ondanks | Dutch Summary 232 dat het product niet bekend is met de hardware van de equiplet, deze toch in staat is acties uit te voeren. Tevens beschrijft het hoofdstuk hoe de equiplets omgaan met verschillende hardwareconfiguraties en ondanks de aanpassingen zichzelf toch kunnen besturen. De equiplet kan dan ook aangepast worden zonder dat deze opnieuw geprogrammeerd hoeft te worden. In Hoofdstuk 6 Architectuur wordt vervolgens dieper ingegaan op de bovenliggende architectuur van de equiplets. Hier worden prestaties gecombineerd met flexibiliteit, waarvoor een hybride architectuur is ontwikkeld die het grid van equiplets controleert door het gebruik van twee platformen: Multi-Agent System (MAS) en Robot Operating System (ROS). Nadat de architectuur is vastgesteld, wordt er in Hoofdstuk 7 onderzocht hoe deze veilig ingezet kan worden. Hierbij wordt een controlesysteem ingevoerd dat het systeemgedrag bepaalt, waarmee het gedrag van de equiplets transparant wordt gemaakt. Tevens zal een simulatie met input van de sensoren uit de fysieke wereld ’live’ controleren of alle bewegingen veilig uitgevoerd kunnen worden. Nadat de basisfunctionaliteit van het Grid nu compleet is, wordt in Hoofdstuk 8 Validatie en Utilisatie gekeken naar hoe Grid Manufacturing gebruikt kan worden en welke nieuwe mogelijkheden deze kan opleveren. Zo wordt er besproken hoe zowel een hi¨erarchische als een heterarchische aanpak, waar alle systemen gelijk zijn, gebruikt kan worden. Daarnaast laat het hoofdstuk o.a. aan de hand van enkele voorbeelden en simulaties zien welke effecten herconfiguratie kan hebben, en welke voordelen deze aanpak zoal kan bieden.. Het proefschrift laat zien hoe met technische middelen geautomatiseerde flexibiliteit mogelijk wordt gemaakt. Hoewel het gehele concept nog volwassen zal moeten worden, worden er enkele aspecten getoond die op de korte termijn toepasbaar zijn in de industrie. Enkele voorbeelden hiervan zijn: (1) het combineren van gegevens uit diverse (autonome) bronnen voor 6D-lokalisatie; (2) een data-gedreven systeem, de zogeheten hardware-abstractielaag, die herconfigureerbare systemen controleert en de mogelijkheid biedt om deze productiesystemen aan te passen zonder deze te hoeven herprogrammeren; en (3) het gebruik van Cyber-Fysieke systemen om de veiligheid te verhogen.
MULTIFILE
In the Netherlands, energy cooperatives are increasingly active in the production of renewable energy. Many cooperatives have concrete plans to invest in energy projects, such as solar fields and wind turbines. Unfortunately, in the coming years there will hardly be any room for such projects in the electricity grid. In their quest to help solve this predicament, energy cooperatives develop new and innovative energy services, for example delivering grid services to distribution system operators (DSOs). However, in this endeavor they encounter legal as well as economic obstacles.
DOCUMENT
Abstract: Unlike manufacturing technology for semiconductors and printed circuit boards, the market for traditional micro assembly lacks a clear public roadmap. More agile manufacturing strategies are needed in an environment in which dealing with change becomes a rule instead of an exception. In this paper, an attempt is made to bring production with universal micro assembly cells to the next level. This is realised by placing a larger number of cells, called Equiplets, in a “Grid”. Equiplets are compact and low-cost manufacturing platforms that can be reconfigured to a broad number of applications. Benchmarking Equiplet production has shown reduced time to market and a smooth transition from R&D to Manufacturing. When higher production volumes are needed, more systems can be placed in parallel to meet the manufacturing demand. Costs of product design changes in the later stage of industrialisation have been reduced due to the modular production in grids, which allows the final design freeze to be postponed as late as possible. The need for invested capital is also pushed backwards accordingly. doi 10.1007/978-3-642-11598-1_32
LINK
A model to describe biogas transport costs in a regional grid is presented. In the model biogas is collected to a central location by transport through dedicated pipelines. Costs have been calculated for two different lay-outs of the grid i.e. star and fishbone lay-out. The costs depend on the covered area and the size of the digesters. Model results show that in a star layout transport costs for small scale digesters are much higher than costs for large scale digesters and costs in a fishbone lay-out are lower than costs in a star lay-out.
DOCUMENT
This study used historical data from a Park & Ride facility in Amsterdam to build a validated computer (Python) model to optimize battery and grid connection sizing. The case study modelled is equipped with 8 EV chargers (16 connections), an on-site supplementary battery, and a limited capacity grid connection. This model was then used to optimize the battery energy storage capacity and grid connection capacity for minimal annualized investment, using a future proof monthly load profile. A variety of battery control strategies were simulated using both the optimal system sizing and the current system sizing. The results were compared and a recommended control strategy presented, considering a number of performance metrics.
MULTIFILE
Battery energy storage (BES) can provide many grid services, such as power flow management to reduce distribution grid overloading. It is desirable to minimise BES storage capacities to reduce investment costs. However, it is not always clear how battery sizing is affected by battery siting and power flow simultaneity (PFS). This paper describes a method to compare the battery capacity required to provide grid services for different battery siting configurations and variable PFSs. The method was implemented by modelling a standard test grid with artificial power flow patterns and different battery siting configurations. The storage capacity of each configuration was minimised to determine how these variables affect the minimum storage capacity required to maintain power flows below a given threshold. In this case, a battery located at the transformer required 10–20% more capacity than a battery located centrally on the grid, or several batteries distributed throughout the grid, depending on PFS. The differences in capacity requirements were largely attributed to the ability of a BES configuration to mitigate network losses. The method presented in this paper can be used to compare BES capacity requirements for different battery siting configurations, power flow patterns, grid services, and grid characteristics.
DOCUMENT
SEEV4-City is an innovation project funded by the European Union Interreg North Sea Region Programme. Its main objective is to demonstrate smart electric mobility and integration of renewable energy solutions and share the learnings gained. The project reports on the results of six Operational Pilots (OPs) which have different scales and are located in five different cities in four different countries in the North Sea Region.Loughborough OP (United Kingdom) is the smallest pilot, being a household with a bi-directional EV charging unit for the Nissan Leaf, a stationary battery, and a PV system. In the Kortrijk OP (Belgium), a battery system and a bi-directional charging unit for the delivery van (as well as a smart charging station for ebikes) were added to the energy system. In Leicester (United Kingdom), five unidirectional charging units were to be accompanied by four bi-directional charging units. The Johan Cruyff Arena OP is a larger pilot in Amsterdam, with a 2.8 MWh (partly) second life stationary battery storage for Frequency Control Regulation services and back-up power, 14 fast chargers and one bi-directional charger. Integrated into the existing energy system is a 1 MW PV system that is already installed on the roof. In the Oslo OP, 102 chargers were installed, of which two are fast chargers. A stationary battery energy storage system (BESS) supports the charging infrastructure and is used for peak shaving. The FlexPower OP in Amsterdam is the largest OP with over 900 EV charging outlets across the city, providing smart charging capable of reducing the energy peak demand in the evening.Before the start of the project, three Key Performance Indicators (KPIs) were determined:A. Estimated CO2 reductionB. Estimated increase in energy autonomyC. Estimated Savings from Grid Investment Deferral
DOCUMENT
The methodology should be a uniform approach that also is flexible enough to accommodate all combinations that make up the different solutions in 6 OPs. For KPIs A and B this required the use of sub-KPIs to differentiate the effects of each (individual and combination of) implemented solutions and prevent double counting of results. This approach also helped to ensure that all 6 OPs use a common way and scope to calculate the various results. Consequently, this allowed the project to capture the results per OP and the total project in one ‘measurement results’ template. The template is used in both the individual OP reports and the ‘KPI Results: Baseline & Final results’ report where all results are accumulated; each instance providing a clear overview of what is achieved. This report outlines the details of the methodology used and applied. It is not just meant to provide a clarification of the results of the project, but is also meant to allow others who are embarking on adopting similar solutions for the purpose of CO2 reduction, becoming more energy autonomous or avoid grid stress or investments to learn about and possibly use the same methodology.
DOCUMENT
New technologies or approaches are being widely developed and proposed to be deployed in real energy systems to improve desired objectives; however, supporting decision making processes to select best solutions in terms of performance and efficiently following cost-benefit analysis require some sort of scientific evidence based tools. These tools should be reliable, robust, and capable of demonstrating the behaviour and impact of newly developed devices or algorithms in different pre- defined scenarios. Therefore, new approaches and technologies need to be tested and verified using a safe laboratory test environment.This report is about the development and realisation of some major tools and reliable methods to calculate risks and opportunities for integrating of new energy resources into the European electricity grid. Hanze University Groningen and Politecnico di Torino worked together within the STORE&GO project sharing laboratories, knowledge, hardware facilities and researchers for the realisation of the characterisation and mathematical modelling of renewable resources. Needed to realize a stable and reliable environment for remote physical hardware in the loop simulations.For this realisation we started with the local characterisation of a PV-Field and a PEM electrolyser at Entrance Groningen by logging and measuring the electric behaviour and specific device parameters to integrate and convert these into working mathematical models of a PV-Field and electrolyser prosumer. After testing and evaluating these models by comparing the results with the real-time measurements, these test and modelling is also realised from the remote laboratory in Torino. To achieve dynamical physical hardware we also realised dynamic mathematical model(s) with real-time functionality to interact directly with the remote electrolyser. To connect both the laboratories with full duplex communication functionalities between physical hardware and models we have also realized a network which is able to share network resources on both local and remote sites.
DOCUMENT
The project STORE&GO aims to investigate all the aspects regarding the integration of large-scale Power-to-Gas (PtG) at European level, by exploiting it as means for long term storage. One of the aspects that should be properly addressed is the beneficial impact that the integration of PtG plants may have on the electricity system.In the project framework, WP6 devoted its activities to investigate different aspects of the integration of PtG in the electricity grid, with the previous delivered reports.This deliverable focused in particular on how integrate the information about the facilities replicating the real world condition into a simulation environment. For doing this, the concept of remote Physical Hardware-in-the-Loop (PHIL) has been used and exploit.Remote simulation with physical hardware appears to be an effective means for investigating new technologies for energy transition, with the purpose of solving the issues related to the introduction of new Renewable Energy Sources (RES) into the electricity system. These solutions are making the overall energy systems to be investigated much more complex than the traditional ones, introducingnew challenges to the research. In fact:• the newly integrated technologies deal with different energy vectors and sectors, thus• requiring interoperability and multidisciplinary analysis;• the systems to be implemented often are large-scale energy systems leading to enormously complicated simulation models;• the facilities for carrying out the experiments require huge investments as well as suitable areas where to be properly installed.This may lead to the fact that a single laboratory with limited expertise, hardware/software facilities and available data has not the ability to secure satisfactory outcomes. The solution is the share of existing research infrastructures, by virtually joining different distant laboratories or facilities.This results in improvement of simulation capabilities for large-scale systems by decoupling into subsystems to be run on distant targets avoidance of replication of already existing facilities by exploiting remote hardware in the loop concept for testing of remote devices.Also confidential information of one lab, whose sharing may be either not allowed or requiring long administrative authorization procedures, can be kept confidential by simulating models locally and exchanging with the partners only proper data and simulation results through the co-simulation medium.Thanks to the realized method it is possible to real time analyse renewable devices at remotepower plants and place them in the loop of a local network simulation.The results reported show that the architecture developed is strong enough for being applied also atnew renewable power plants. This opens the possibility to use the data for research purposed, butalso to act in remote on the infrastructure in case of particular test (for example the acceptance test).
DOCUMENT