Public lighting’s primary purpose is nighttime visibility for security and safety. How to meet so many requirements of so many stakeholders? The key to developing a good plan is to relate lighting to functions of public spaces, because street lighting is more than a technical requirement, a security need, or a design element. It can be thought of and utilized in terms of how the type, placement, and wattage affect how a street is perceived and used. With present-day used street lighting systems however, flexibility is expensive, as is maintenance and energy consumption. A new solution is to use LED lighting with a Direct Current power system. Advantages are a decrease in: energy conversions; material use; amount of switch- boxes; components; labour costs and environmental comfort. The overall implementation of LED and DC will result in better control and efficient maintenance due to integrated bidirectional communication. A challenge is the relatively high investment for these new solutions. Another challenge; DC is not a standard yet in rules and regulations. In the paper the transition to direct current public lighting system will be described with all the pros and cons. A new concept of public ownership, to overcome financial challenges will be discussed. M Hulsebosch1, P Willigenburg2 ,J Woudstra2 and B Groenewald3 1CityTec b.v., Alblasserdam, The Netherlands 2The Hague University of Applied Sciences, The Hague, The Netherlands 3Cape Peninsula University of Technology, Cape Town, South Africa 10.1109/ICUE.2014.6904186
Aims and objectives: To examine the predictive properties of the brief Dutch National Safety Management Program for the screening of frail hospitalised older patients (VMS) and to compare these with the more extensive Maastricht Frailty Screening Tool for Hospitalised Patients (MFST-HP). Background: Screening of older patients during admission may help to detect frailty and underlying geriatric conditions. The VMS screening assesses patients on four domains (i.e. functional decline, delirium risk, fall risk and nutrition). The 15-item MFST-HP assesses patients on three domains of frailty (physical, social and psychological). Design: Retrospective cohort study. Methods: Data of 2,573 hospitalised patients (70+) admitted in 2013 were included, and relative risks, sensitivity and specificity and area under the receiver operating characteristic (AUC) curve of the two tools were calculated for discharge destination, readmissions and mortality. The data were derived from the patients nursing files. A STARD checklist was completed. Results: Different proportions of frail patients were identified by means of both tools: 1,369 (53.2%) based on the VMS and 414 (16.1%) based on the MFST-HP. The specificity was low for the VMS, and the sensitivity was low for the MFST-HP. The overall AUC for the VMS varied from 0.50 to 0.76 and from 0.49 to 0.69 for the MFST-HP. Conclusion: The predictive properties of the VMS and the more extended MFST-HP on the screening of frailty among older hospitalised patients are poor to moderate and not very promising. Relevance to clinical practice: The VMS labels a high proportion of older patients as potentially frail, while the MFST-HP labels over 80% as nonfrail. An extended tool did not increase the predictive ability of the VMS. However, information derived from the individual items of the screening tools may help nurses in daily practice to intervene on potential geriatric risks such as delirium risk or fall risk.
AbstractThis study assessed the efficacy of a co-designed, school-based intervention meant to promote physical activityand fitness among Dutch prevocational secondary students. In a two-year clustered randomized controlled trial,students’ physical activity and fitness was measured by indirect and direct methods. In the intervention group,we used the triple-I procedure, a participatory action research method, to co-design the intervention together withthe students and schools. This procedure involved focus group discussions by interviewing and imagingtechniques, followed by a co-design process to align the intervention content and implementation processes withstudents’ preferences. The study involved 22 Dutch schools, with a total of 2685 13-to-14-year-old prevocationalsecondary students. Schools were randomly assigned to either intervention (11 schools, 1446 students) or controlgroup (11 schools, 1239 students).There were no significant intervention differences between students’ overallphysical activity behavior on intervention versus control schools. However, with regards to various specificphysical fitness indicators, such as the long jump, handgrip strength, shuttle run test, and the sum of skinfolds,intervention school students performed significantly better than the control group students. Furthermore, whentaking into account student participation, i.e. the success of the co-design process, schools with higher levels ofstudent participation showed higher shuttle run scores. However, such graded effects were not similarly apparentwith regards to students’ physical fitness indicators. This study showed that co-designing a comprehensivephysical activity intervention on numerous Dutch high schools via the Triple-I Interactive Method was feasible.Moreover, results showed that certain aspects of physical fitness were improved after two years of intervention,although taken together with the lack of effects on physical activity, results were mixed.