OBJECTIVES: Patients with head and neck cancer (HNC) frequently encounter weight loss with multiple negative outcomes as a consequence. Adequate treatment is best achieved by early identification of patients at risk for critical weight loss. The objective of this study was to detect predictive factors for critical weight loss in patients with HNC receiving (chemo)radiotherapy ((C)RT).MATERIALS AND METHODS: In this cohort study, 910 patients with HNC were included receiving RT (±surgery/concurrent chemotherapy) with curative intent. Body weight was measured at the start and end of (C)RT. Logistic regression and classification and regression tree (CART) analyses were used to analyse predictive factors for critical weight loss (defined as >5%) during (C)RT. Possible predictors included gender, age, WHO performance status, tumour location, TNM classification, treatment modality, RT technique (three-dimensional conformal RT (3D-RT) vs intensity-modulated RT (IMRT)), total dose on the primary tumour and RT on the elective or macroscopic lymph nodes.RESULTS: At the end of (C)RT, mean weight loss was 5.1±4.9%. Fifty percent of patients had critical weight loss during (C)RT. The main predictors for critical weight loss during (C)RT by both logistic and CART analyses were RT on the lymph nodes, higher RT dose on the primary tumour, receiving 3D-RT instead of IMRT, and younger age.CONCLUSION: Critical weight loss during (C)RT was prevalent in half of HNC patients. To predict critical weight loss, a practical prediction tree for adequate nutritional advice was developed, including the risk factors RT to the neck, higher RT dose, 3D-RT, and younger age.
DOCUMENT
(1) Background: Chemoradiotherapy (CRT) for head and neck cancer (HNC) is associated with severe toxicity resulting in fatigue and weight loss, including loss of skeletal muscle mass. Exercise interventions might positively affect physical fitness and quality of life. Sufficient adherence and compliance rates are necessary for optimal effects. This study aimed to gain insight into expectations and experiences and factors influencing adherence, retention and compliance of HNC patients participating in exercise intervention during CRT. (2) Methods: Consecutive participants were invited for semi-structured interviews, conducted pre- and post-intervention. A deductive approach was used to identify themes and factors influencing adherence, retention and compliance. (3) Results: Thematic saturation was reached after interviewing 14 patients pre-intervention. Five themes were identified: planning and time management, treatment toxicity, motivation to exercise, exercise intervention and supervision by a physiotherapist. The intensity of the treatment schedule and treatment toxicity were important barriers. Facilitators mentioned were physical and emotional benefits, social support as well as the simplicity and home-based setting of the intervention. (4) Conclusions: A personalised approach, considering the individual facilitators and barriers of HNC patients, is important to increase adherence, retention and compliance to exercise intervention and to reap the optimal effects of the program.
DOCUMENT
INTRODUCTION: Innovations in head and neck cancer (HNC) treatment are often subject to economic evaluation prior to their reimbursement and subsequent access for patients. Mapping functions facilitate economic evaluation of new treatments when the required utility data is absent, but quality of life data is available. The objective of this study is to develop a mapping function translating the EORTC QLQ-C30 to EQ-5D-derived utilities for HNC through regression modeling, and to explore the added value of disease-specific EORTC QLQ-H&N35 scales to the model.METHODS: Data was obtained on patients with primary HNC treated with curative intent derived from two hospitals. Model development was conducted in two phases: 1. Predictor selection based on theory- and data-driven methods, resulting in three sets of potential predictors from the quality of life questionnaires; 2. Selection of the best out of four methods: ordinary-least squares, mixed-effects linear, Cox and beta regression, using the first set of predictors from EORTC QLQ-C30 scales with most correspondence to EQ-5D dimensions. Using a stepwise approach, we assessed added values of predictors in the other two sets. Model fit was assessed using Akaike and Bayesian Information Criterion (AIC and BIC) and model performance was evaluated by MAE, RMSE and limits of agreement (LOA).RESULTS: The beta regression model showed best model fit, with global health status, physical-, role- and emotional functioning and pain scales as predictors. Adding HNC-specific scales did not improve the model. Model performance was reasonable; R2 = 0.39, MAE = 0.0949, RMSE = 0.1209, 95% LOA of -0.243 to 0.231 (bias -0.01), with an error correlation of 0.32. The estimated shrinkage factor was 0.90.CONCLUSIONS: Selected scales from the EORTC QLQ-C30 can be used to estimate utilities for HNC using beta regression. Including EORTC QLQ-H&N35 scales does not improve the mapping function. The mapping model may serve as a tool to enable cost-effectiveness analyses of innovative HNC treatments, for example for reimbursement issues. Further research should assess the robustness and generalizability of the function by validating the model in an external cohort of HNC patients.
DOCUMENT