Research Questions • What are the characteristics of vulnerable populations in The Hague? • What are their needs in order to adapt to heatwaves, and how do they cope? • What are existing sustainable solutions for protecting vulnerable populations? • How can the municipality of The Hague increase urban resilience with regards to heat?
Het Knowledge Mile Park (KMP), momenteel de drukste verkeersader van Amsterdam, wordt de komende jaren uitgebreid vergroend. Op diverse locaties langs de KMP werd steekproefsgewijs hittemetingen uitgevoerd om hittestress op te sporen, verkoelingscapaciteit van het aanwezige groen te meten en het thermisch comfort van de KMP voor de gebruiker te inventariseren. Er werd volgens het Cool Towns Heat Stress Measurement Protocol (Spanjar e.a., 2020) hittemetingenuitgevoerd met mobiele weerstations, infraroodcamera’s en vragenlijsten. Uitgevoerd op twee opeenvolgende dagdelen tussen 17.00 tot 20.00 uur. Dit vond plaats op 21 en 22 augustus 2023 toen de luchttemperatuur 23-25 °C bereikte. De resultaten geven het hitteverloop van een milde warme zomerdag weer. Uit de enquête afgenomen onder KMP-gebruikers blijkt dat meer dan de helft van de respondenten op zowel het Weesperplein als het Wibautpark het als een beetje warm of neutraal ervaren. De meetresultaten komen overeen met Europees hitteonderzoek (Spanjar e.a., 2022) en laat zien dat op locaties in de zon zoals op het stenige Weesperplein en het grasveld, mensen tussen 17.00 en 18.30 uur te maken hebben gehad met een sterke tot extreme hittestress condities (35 tot 45 °C PET, zie Grafiek 1). Op de drie andere locaties verminderen boomkronen de hittestress tot licht of niet aanwezig. Verharde locaties blootgesteld aan de zon warmen op en verminderen het thermisch comfort verder door de werking van infraroodstraling. De uitkomsten van de enquête maakt het belang van het goed reguleren van het thermisch comfort op de KMP zichtbaar.
This applied research project aims to generate a better understanding of the effects of heatwaves on vulnerable population groups in the municipality of The Hague, and suggests ways in which the municipality can help such groups to cope with these heatwaves. The research was performed as a cooperation between The Hague University of Applied Sciences (THUAS), the International Institute of Social Studies (ISS, Erasmus University Rotterdam) and the International Centre for Frugal Innovation (ICFI, Leiden-Delft-Erasmus Universities). Heatwaves constitute an important yet often overlooked part of climate change and their impacts qualify as disasters. According to the World Disasters Report 2020, the three heatwaves affecting Belgium, France, Germany, Italy, the Netherlands, Spain, Switzerland and the UK in the summer of 2019 caused 3,453 deaths.1 2020 was a new record year for the Netherlands because it was the first time that a heatwave included five days in a row during which the temperature reached 35 degrees or more. In addition, 40 degrees was measured for the first time, and periods of tropical days and nights are generally getting longer. Most importantly, this trend is accelerating faster than the climate change models are predicting.2 In addition, the COVID-19 pandemic is compounding the effect of heatwaves, as vulnerable individuals may be reluctant to seek cool spaces out of fear of infection. Already in 2006, the Netherlands ranked near the top of the global disaster index due to the number of excess deaths that could be attributed to the heatwave. In the same year, the EU published the first climate strategy in which heat is recognised as a priority. In 2008, the Netherlands developed its first national heat plan.4 The municipality of The Hague has a municipal climate adaptation strategy and has developed a draft local heat plan in the summer of 2021, which was published in February 2022 . This research was not meant to be and was not set up as an evaluation of the current heat plan, which has not yet been activated. At the level of municipalities and cities, the concept of urban resilience is key. It refers to “the capacity of individuals, communities, institutions, businesses, and systems within a city to survive, adapt, and grow no matter what kinds of chronic stresses and acute shocks they experience”. Heatwaves clearly constitute acute shocks which are rapidly developing into chronic stresses. In turn, heatwaves also exacerbate the chronic stresses that are already there, i.e. existing chronic stresses also lead to greater impact of a heatwave. In other words, there are negative interaction effects. Addressing these effects requires overcoming the silo approach to urban governance, in which different municipal departments as well as other stakeholders (such as the Red Cross, housing corporations, tenants’ associations, care organisations, entrepreneurs etc.) each address different parts of the problem, rather than doing so in an integrated and inclusive manner. The dataset for this study is archived in DANS Easy: https://doi.org/10.17026/dans-xeb-h8uk
MULTIFILE
The integration of renewable energy resources, controllable devices and energy storage into electricity distribution grids requires Decentralized Energy Management to ensure a stable distribution process. This demands the full integration of information and communication technology into the control of distribution grids. Supervisory Control and Data Acquisition (SCADA) is used to communicate measurements and commands between individual components and the control server. In the future this control is especially needed at medium voltage and probably also at the low voltage. This leads to an increased connectivity and thereby makes the system more vulnerable to cyber-attacks. According to the research agenda NCSRA III, the energy domain is becoming a prime target for cyber-attacks, e.g., abusing control protocol vulnerabilities. Detection of such attacks in SCADA networks is challenging when only relying on existing network Intrusion Detection Systems (IDSs). Although these systems were designed specifically for SCADA, they do not necessarily detect malicious control commands sent in legitimate format. However, analyzing each command in the context of the physical system has the potential to reveal certain inconsistencies. We propose to use dedicated intrusion detection mechanisms, which are fundamentally different from existing techniques used in the Internet. Up to now distribution grids are monitored and controlled centrally, whereby measurements are taken at field stations and send to the control room, which then issues commands back to actuators. In future smart grids, communication with and remote control of field stations is required. Attackers, who gain access to the corresponding communication links to substations can intercept and even exchange commands, which would not be detected by central security mechanisms. We argue that centralized SCADA systems should be enhanced by a distributed intrusion-detection approach to meet the new security challenges. Recently, as a first step a process-aware monitoring approach has been proposed as an additional layer that can be applied directly at Remote Terminal Units (RTUs). However, this allows purely local consistency checks. Instead, we propose a distributed and integrated approach for process-aware monitoring, which includes knowledge about the grid topology and measurements from neighboring RTUs to detect malicious incoming commands. The proposed approach requires a near real-time model of the relevant physical process, direct and secure communication between adjacent RTUs, and synchronized sensor measurements in trustable real-time, labeled with accurate global time-stamps. We investigate, to which extend the grid topology can be integrated into the IDS, while maintaining near real-time performance. Based on topology information and efficient solving of power flow equation we aim to detect e.g. non-consistent voltage drops or the occurrence of over/under-voltage and -current. By this, centrally requested switching commands and transformer tap change commands can be checked on consistency and safety based on the current state of the physical system. The developed concepts are not only relevant to increase the security of the distribution grids but are also crucial to deal with future developments like e.g. the safe integration of microgrids in the distribution networks or the operation of decentralized heat or biogas networks.