The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (−9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth’s climate.
MULTIFILE
Standard SARS-CoV-2 testing protocols using nasopharyngeal/throat (NP/T) swabs are invasive and require trained medical staff for reliable sampling. In addition, it has been shown that PCR is more sensitive as compared to antigen-based tests. Here we describe the analytical and clinical evaluation of our in-house RNA extraction-free saliva-based molecular assay for the detection of SARS-CoV-2. Analytical sensitivity of the test was equal to the sensitivity obtained in other Dutch diagnostic laboratories that process NP/T swabs. In this study, 955 individuals participated and provided NP/T swabs for routine molecular analysis (with RNA extraction) and saliva for comparison. Our RT-qPCR resulted in a sensitivity of 82,86% and a specificity of 98,94% compared to the gold standard. A false-negative ratio of 1,9% was found. The SARS-CoV-2 detection workflow described here enables easy, economical, and reliable saliva processing, useful for repeated testing of individuals.
LINK
Veel organisaties hebben de afgelopen jaren geïnvesteerd in een gezondere werkomgeving. Steeds meer aandacht gaat uit naar preventieve maatregelen om de gezondheid en het welzijn van werknemers op kantoor te verbeteren. Denk aan een goede inrichting, een gezond binnenklimaat, het stimuleren van vitaliteit, sociale verbondenheid en werkgeluk en het tegengaan van stress. Dit is niet alleen van belang voor individuele werknemers, maar ook voor organisaties, want: gezondheid, welzijn en productiviteit gaan samen op. Waar tot nu toe echter nog weinig aandacht voor is, is dat werknemers onderling verschillen, en dat zij dus ook verschillen in hun behoeften ten aanzien van de werkplek. Door in de werkomgeving beter in te spelen op individuele verschillen kunnen werknemers effectiever werken en worden bovendien diversiteit en inclusiviteit gestimuleerd. Een belangrijke, maar nog weinig onderzochte dimensie waar mensen op kunnen verschillen is de mate waarin zij gevoelig zijn voor prikkels en omgevingsinvloeden, oftewel: omgevingssensitiviteit. De recente ontwikkelingen rondom COVID-19, hybride werken en de ingrijpende veranderingen in de plekken waar mensen werken, maken nieuwe kennis over de effecten van omgevingssensitiviteit in de werkomgeving extra urgent. Tijdens dit postdocproject wordt in kaart gebracht wat effecten van omgevingssensitiviteit in de werkomgeving zijn, welke behoeften werknemers met een hoge omgevingssensitiviteit hebben, en hoe hierop het beste kan worden ingespeeld door aanpassingen in de werkomgeving.
Point-of-Care devices are broadly viewed as an important contribution to reduce the costs in our healthcare system. Cheap, quick, and reliable testing close to the point of need, can help early detection and thus reduce treatment costs, while improving the quality of life. An important challenge in the realization is the development of the individual cartridges that should be produced in large quantities at low costs. Especially for applications where high sensitivity is required, these cartrgidges will typically have a complex design. In this project we want to develop a manufacturing strategy for large scale production of cartridges based on photonic sensing chips, currently the most sensitive sensors available. A typical sensor cartridge with photonic sensors would comprise the sensor chip, an interface with active components (light source and detectors), the bio-active layer that captures the biomarkers to be detected and a protective package. In addition, there is the choice to integrate the active components in the package (making the interface an electrical one) or placing them in the read-out unit (making the interface an optical one). Finally, testing of the sensor cartridges should also be part of the process. A suitable manufacturing strategy would offer the lowest total-cost-of-ownership (TCO) of the production and use of the cartrdiges. Important in the considereations is that steps can be carried out at the wafer level, at the die level, and at the cartridge level. Because choices for a specific solution will strongly influence the possibilities for other steps, the development of a producitons strategy is far from straightforward. In this project we want to study the possibilities of the individual processes at the three levels mentioned (wafer, die, and cartridge), and in parallel develop a theoretical framework for finding the best strategy in this type of complex production processes.
Wildlife crime is an important driver of biodiversity loss and disrupts the social and economic activities of local communities. During the last decade, poaching of charismatic megafauna, such as elephant and rhino, has increased strongly, driving these species to the brink of extinction. Early detection of poachers will strengthen the necessary law enforcement of park rangers in their battle against poaching. Internationally, innovative, high tech solutions are sought after to prevent poaching, such as wireless sensor networks where animals function as sensors. Movement of individuals of widely abundant, non-threatened wildlife species, for example, can be remotely monitored ‘real time’ using GPS-sensors. Deviations in movement of these species can be used to indicate the presence of poachers and prevent poaching. However, the discriminative power of the present movement sensor networks is limited. Recent advancements in biosensors led to the development of instruments that can remotely measure animal behaviour and physiology. These biosensors contribute to the sensitivity and specificity of such early warning system. Moreover, miniaturization and low cost production of sensors have increased the possibilities to measure multiple animals in a herd at the same time. Incorporating data about within-herd spatial position, group size and group composition will improve the successful detection of poachers. Our objective is to develop a wireless network of multiple sensors for sensing alarm responses of ungulate herds to prevent poaching of rhinos and elephants.