This study examined the ethical sensitivity of high-ability undergraduate students (n=731) in the Netherlands who completed the 28-item Ethical Sensitivity Scale Questionnaire (ESSQ) developed by Tirri & Nokelainen (2007; 2011). The ESSQ is based on Narvaez' (2001) operationalization of ethical sensitivity in seven dimensions. The following research question was explored and subjected to a Mann-Whitney U Test: Are there any differences in ethical sensitivity between (1) academically average and high-ability students, and (2) male and female students? The self-assessed ethical sensitivity of high-ability students was higher than that of their average-ability peers. Furthermore, female students scored higher on 'taking the perspectives of others'. These results imply that programs for high-ability students incorporating ethical issues could build upon characteristics of this group.
DOCUMENT
This research article shows that a high intensity exercise program compared to a low intensity exercise program of the same session duration and frequency, increases insulin sensitivity to a larger extend in healthy subjects. It also shows that the short insulin tolerance test can be used to detect differences in insulin sensitivity in intervention studies.
LINK
Environmental nano- and micro-plastics (NMPs) are highly diverse [2]. Accounting for this diversity is one of the main challenges to develop a comprehensive understanding of NMPs detection, quantification, fate, and risks [3]. Two major issues currently limit progresses within this field: (a) validation and broadening the current analytical tools (b) uncertainty with respect to NMPs occurrence and behaviour at small scales (< 20 micron). Tracking NMPs in environmental systems is currently limited to micron size plastics due to the size detection limit of the available analytical techniques. There are currently many uncertainties regarding detecting nanoplastics in real environmental systems, e.g. the inexistence of commercially available NMPs and incompatibility between them and those generated from plastic fragments degradation in the environment. Trying to tackle these problems some research groups synthesized NMPs dopped with metals inside [16]. However, even though elemental analysis techniques (ICP-MS) are rather sensitive, the low volume of these metals encapsulated in the nanoparticles make their detection rather challenging. At the same time, due to Sars-Cov-19 pandemic, nucleic acid identification technologies (LAMP, PCR) experienced a fast evolution and are able to provide detection at very low levels with very compact and reliable equipment. Nuclepar proposes the use of Electrohydrodynamic Atomization (EHDA) to generate NMPs coated with nucleic acids of different polymer types, sizes, and shapes, which can be used as support for detection of such particles using PCR-LAMP technology. If proven possible, Nuclepar might become a first step towards an easy NMPs detection tool. This knowledge will certainly impact current risk assessment tools, efficient interventions to limit emissions and adequate regulations related to NMPs.
Veel organisaties hebben de afgelopen jaren geïnvesteerd in een gezondere werkomgeving. Steeds meer aandacht gaat uit naar preventieve maatregelen om de gezondheid en het welzijn van werknemers op kantoor te verbeteren. Denk aan een goede inrichting, een gezond binnenklimaat, het stimuleren van vitaliteit, sociale verbondenheid en werkgeluk en het tegengaan van stress. Dit is niet alleen van belang voor individuele werknemers, maar ook voor organisaties, want: gezondheid, welzijn en productiviteit gaan samen op. Waar tot nu toe echter nog weinig aandacht voor is, is dat werknemers onderling verschillen, en dat zij dus ook verschillen in hun behoeften ten aanzien van de werkplek. Door in de werkomgeving beter in te spelen op individuele verschillen kunnen werknemers effectiever werken en worden bovendien diversiteit en inclusiviteit gestimuleerd. Een belangrijke, maar nog weinig onderzochte dimensie waar mensen op kunnen verschillen is de mate waarin zij gevoelig zijn voor prikkels en omgevingsinvloeden, oftewel: omgevingssensitiviteit. De recente ontwikkelingen rondom COVID-19, hybride werken en de ingrijpende veranderingen in de plekken waar mensen werken, maken nieuwe kennis over de effecten van omgevingssensitiviteit in de werkomgeving extra urgent. Tijdens dit postdocproject wordt in kaart gebracht wat effecten van omgevingssensitiviteit in de werkomgeving zijn, welke behoeften werknemers met een hoge omgevingssensitiviteit hebben, en hoe hierop het beste kan worden ingespeeld door aanpassingen in de werkomgeving.
Point-of-Care devices are broadly viewed as an important contribution to reduce the costs in our healthcare system. Cheap, quick, and reliable testing close to the point of need, can help early detection and thus reduce treatment costs, while improving the quality of life. An important challenge in the realization is the development of the individual cartridges that should be produced in large quantities at low costs. Especially for applications where high sensitivity is required, these cartrgidges will typically have a complex design. In this project we want to develop a manufacturing strategy for large scale production of cartridges based on photonic sensing chips, currently the most sensitive sensors available. A typical sensor cartridge with photonic sensors would comprise the sensor chip, an interface with active components (light source and detectors), the bio-active layer that captures the biomarkers to be detected and a protective package. In addition, there is the choice to integrate the active components in the package (making the interface an electrical one) or placing them in the read-out unit (making the interface an optical one). Finally, testing of the sensor cartridges should also be part of the process. A suitable manufacturing strategy would offer the lowest total-cost-of-ownership (TCO) of the production and use of the cartrdiges. Important in the considereations is that steps can be carried out at the wafer level, at the die level, and at the cartridge level. Because choices for a specific solution will strongly influence the possibilities for other steps, the development of a producitons strategy is far from straightforward. In this project we want to study the possibilities of the individual processes at the three levels mentioned (wafer, die, and cartridge), and in parallel develop a theoretical framework for finding the best strategy in this type of complex production processes.